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Abstract. In this paper we study the supersingularity of a class of varieties called diagonal
hypersurfaces using Stickleberger’s Criterion. We show that a curve is supersingular over Fp if and
only if there is a Fermat curve supersingular over the same field and a surjective morphism to the
diagonal curve. Since a Fermat variety of degree m is supersingular over Fp if and only if pv ≡ −1
mod m for some v, this classifies supersingular diagonal curves. Lastly, we give a formula for the
genus of a primitive diagonal curves and use the classification to give explicit results on the density of
supersingular diagonal curves of low genera. This gives bounds on the prime-genus question of
supersingular curves.
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0. Introduction

Building on the work of [SK79] and [Chu+], we prove the following:

Theorem 0.0.1. Every supersingular diagonal curve of positive genus is covered by a super-
singular Fermat curve

Along with this, we also prove some results on the possible genus-prime combinations of supersin-
gular curves.
The title and above description yield a deceptively complicated picture of the underlying math.
Essentially most of the work here deals with gcds, lcms and exploiting the structure of (Z/nZ)×.
Nevertheless, the aggregate results are hopefully valuable to the interested algebraic geometer.

Structure of the Paper: In Section 1, we review some of the background material to remind
the reader of the content of our results. In Section 2, we provide several results that build on one
another towards a full classification of supersingular diagonal curves, allowing us to prove 0.0.1. In
3, we deduce some interesting results about the genera of supersingular diagonal curves using our
classification.

Acknowledgements. We would like to thank Ben Church and Spencer Dembner for setting
up this project, and their continued guidance and helpful discussions throughout. We are especially
grateful to Ben for providing us results from an unpublished manuscript, which we cite in this paper
as "[Chu+]".

1. Preliminary Theory

Notation. Throughout this paper we let p denote a prime and q a prime power.
X denotes a smooth projective variety and C a curve, both over a field of characteristic p.
By a diagonal variety we mean one defined by an equation of the form xn0

0 + · · ·xnr
r .

By F n
r we denote the Fermat variety of degree n in Pr, that is the variety defined by xn

0 + · · · xn
r .

We use {x} to denote the fractional part of a real number x.

1.1 The Weil Conjectures and Supersingularity

In what perhaps led to the birth of modern algebraic geometry as we know it today, Weil set forth
conjectures (now theorems) about point-counting zeta functions of smooth projective varieties in
his paper [Wei49].
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Theorem 1.1.1 (Weil Conjectures). Let X be n-dimensional, smooth, projective and defined
over a finite field Fq. Let #X(Fqk) denote the number of Fqk-rational points of X. We define:

ζX(t) := exp
∑

k≥1

#X(Fqk)
k

tk


This zeta function then has the following properties:

(a) Rationality:

ζX(t) = P1(t)P3(t) · · ·P2n−1(t)
P0(t)P2(t) · · ·P2n(t)

where each Pi(t) = ∏
j(1 − αi,jt) is an integral polynomial.

(b) Functional Equation:
ζX(q−nt−1) = ±qne/2teζX(t)

where e is the Euler Characteristic of X.

(c) Riemann Hypothesis: |αi,j| = qi/2 for each αi,j of Pi(t)

(d) Betti Numbers: If X arises as a "good reduction mod p" of a complex variety, then
degPi = dimHi(X).

We are purposefully omitting some details from the full statement of the conjectures for clarity
and brevity. What we are focused on are the reciprocal roots αi,j, which the proof of the Weil
conjectures showed were exactly the eigenvalues of the Frobenius map on the l-adic cohomologies,
which can be seen from the Lefschetz trace formula.

Definition 1.1.2. X is supersingular if each reciprocal root αi,j of every polynomial Pi(t)
in the zeta function is of the form qi/2ζ for ζ a root of unity.

Remark. Note that, despite what the name may suggest, "supersingular" does not mean the variety
is especially singular or not smooth. Rather, the terminology seems to have arisen from the fact
that, in antiquity, elliptic curves over C with rank > 1 were referred to as "singular".
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Example 1.1.3. Consider the variety X = Pn. We then have #X(Fq) = qn+1−1
q−1 . Calculating

the zeta function, we get:

ζX(t) = exp
∑

k≥1

#X(Fqk)
k

tk


= exp

∑
k≥1

∑n
i=0 q

ki

k
tk


= exp

 n∑
i=0

∑
k≥1

(qit)k

k


=

n∏
i=0

1
1 − qit

which shows that X is supersingular.

There are quite a few alternative equivalent definitions, all with their own geometric or algebraic
flavor.

Proposition 1.1.4. X being supersingular over Fq implies any of the following equivalent
conditions:

(a) If X is an elliptic curve, then its endomorphism algebra over the algebraic closure has
rank 4.

(b) If X is an abelian variety, then it is Fq-isogenous to a power of a supersingular elliptic
curve.

(c) If q is a square, the supersingular curves of genus g are exactly the maximizers/minimizers
of #X(Fq) over all genus-g curves. [G22]

(d) Assuming the Tate conjecture, the even dimensional l-adic cohomologies of X are spanned
by algebraic cycles. [SK79]

We are using our definition as it allows for an easy verification of supersingularity in the case of
diagonal varieties, as we shall see.

We recall some basic properties of supersingularity.

• X is supersingular over Fq iff it is supersingular over Fqk for all k, i.e supersingularity is
invariant under base change. Specifically, the roots of ζXk are exactly the roots of ζX raised
to the k-th power, and so being a root of unity (or not) is preserved under any base change.
We leave it to the reader to verify this computationally.
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• If φ : Y → X is a dominant rational map of varieties, then Y being supersingular implies X
is supersingular. Intuitively, this is because an injection of cohomologies H i(X) ↪→ H i(Y ) is
induced, and the inclusions commute with Frobenius maps. We refer the reader to Theorem
10.2 and 10.3 of [Chu+] for more details.

• Recall that X is called unirational if its function field has a separable extension which is
purely transcendental. By definition, this means there is a dominant rational map φ : Pn → X.
Therefore, by what we saw in 1.1.3 X must also be supersingular.

1.2 Zeta Function of a Diagonal Variety

In his original paper motivating the celebrated conjectures, Weil specifically studies the zeta function
of diagonal hypersurfaces of the form

X : a0x
n0
0 + · · · + arx

nr
r = 0

These varieties have the convenient property of having a "nice" zeta function that makes it easy to
verify supersingularity.

Observation. The point counts are independent of the coefficients ai. This follows from the fact
that supersingularity is invariant to base change, so (if need be) we can simply take our variety to a
larger field where all the ai have ni-th roots and perform the linear transformation xi 7→ (a−1/ni

i )xi.
Given this, we can WLOG make the following assumptions:

(a) All the coefficients ai are 1

(b) The field X is defined over is Fp for p a prime.

To preserve the ease of point-counting these diagonal hypersurfaces, we don’t want to projectivize
them in the standard way. Rather, we want to embed them into weighted projective space (see
Subsection 1.4 for more details). What this means from a point counting persepctive is we take the
polynomial that defines X and view it as an affine variety Y ⊆ An+1. Then we have:

#X(Fqk) = #Y (Fqk) − 1
qk − 1 (1)

Counting the points and calculate the zeta function for an arbitrary diagonal variety remains
non-trivial. To describe it, we introduce a bunch of new notation.

• Since the zeta function diagonal variety is determined entirely by its exponents, we let ~n
the exponent tuple (n0, ..., nr). We often use this notation to denote a diagonal variety with
exponents ~n and coefficients all 1.

• By αi we denote an element of [0, 1] ∩ Q and by α we denote a tuple (α0, ...αr) of such αi.
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• For a given ~n, q let A~n,q denote the set of all α such that ∑αi ∈ Z and diαi ∈ Z for every i,
where di := gcd(ni, q − 1).

• Let χαi
: F×

q → C× denote the multiplicative character that sends a primitive root γ to e2πiαi .
To make eventual calculations work we extend all such characters to Fq by setting:

χαi
(0) =

0 αi 6= 0

1 αi = 0

• Fixing an additive character ψ : Fq → C×, for a nontrivial multiplicative character χ we recall
the Gauss sum to be:

g(χ) :=
∑

x∈Fq

χ(x)ψ(x)

• For a given α, we recall the Jacobi sum to be:

j(α) := 1
q

∏
i

g(χαi
)

• Finally, for fixed ~n, q let n := lcm(ni) and f = ordn(q). Then for every α ∈ A~n,qf we define
µ(α) to be the smallest integer such that (qµ(α) − 1)αi ∈ Z for each i.

Theorem 1.2.1. Given the notation as above, for X : xn0
0 + · · · + xnr

r = 0,

ζX(t) =
[

r−1∏
i=0

1
1 − qit

]
·

 ∏
α∈A

~n,qf /∼

(
1 + (−1)rj(α) tµ(α)

)
(−1)r

where the α, α′ ∈ A~n,qf are equivalent iff α = qeα′ for some e ∈ Z.

Proof. The details of this result are messy and laborious enough for a paper of their own. We refer
the reader to Weil’s original paper [Wei49] and Sections 1-5 of [Chu+] for proofs. �

Corollary 1.2.1.1. A diagonal variety X is supersingular over Fq if and only if j(α) = ζqi/2

for ζ a root of unity for every α ∈ A~n,qf .

1.3 The Stickleberger Criterion

Corollary 1.2.1.1 gives us a (somewhat) simpler criterion to check for supersingularity. As a quick
sanity check, we note that for any non-trivial character χ that |g(χ)| = √

q, and so our condition
satisfies the Riemann Hypothesis.
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From this, we deduce that |j(α)| = q(r−1)/2, and basic algebraic number theory tells us this divided
by qr−1/2 is a root of unity iff ordp(j(α)) ≥ r−1

2 for all p E OK lying above p, where K = Q(ζp, ζqf −1).
Verifying this condition is in general a hard problem, which we tackle via a theorem of Stickleberger.

Theorem 1.3.1 (Stickleberger). Let p be a prime lying over p in Q(ζqf −1) and let P be a prime
lying over p in Q(ζqf −1, ζp). Let χ be a character of Fq such that

χ(a) ≡ a−(q−1)/m mod p

Then for any integer r ≥ 1 we have:

τ (χr) ∼ Pη(r)

where
η(r) = 1

f

∑
µ

s

(
(q − 1)µr
qf − 1

)
σ−1

µ

where the summation runs over all µ ∈ (Z/(qf − 1)Z)× and where s(v) is the sum of the digits
of the p-adic expansion of v modulo q − 1, i.e

s(v) = (p− 1)
f−1∑
i=0

{
piv

q − 1

}

Proof. See Theorem 10, page 97 of [Lan94]. �

Remark. Readers may be familiar with this theorem phrased in an alternative manner, that the
Stickleberger ideal of an abelian number field K annihilates Cl(K). The above is simply a raw,
calculatory phrasing of this result in the case of K = Q(ζqf −1, ζp).

This theorem, combined with what we deduced before about the Jacobi sum, leads us to our
main tool for calculating supersingularity:

Theorem 1.3.2. Let X be diagonal, defined by (n0, ..., nr). Let n = lcm(ni), f = ordn(p) and
q = pf . Then X is supersingular over Fp if and only if, for each µ ∈ (Z/nZ)×,

r∑
i=0

s

(
(q − 1)µli

n

)
= r + 1

2 (p− 1)f

for each
l ∈

{
(l0, . . . , lr) : li ∈ Z and n |

r∑
i=0

lr and 0 < li < n and n | lini

}

Proof. This essentially comes down to determining when the normalized product ω = q−(r+1)/2∏
i g(χαi

)
is a root of unity, and the result follows from an application of Stickleberger’s theorem. For details
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we refer the reader to Theorems 6.14 and 6.15 of [Chu+] �

Remark. The li here are the numerators of the αi ∈ A~n,q. Using this rephrasing makes casework and
computation simpler. As such, we henceforth refer to these li as the Stickleberg numerators.

This result allows us to write code that can verify supersingularity for any diagonal variety. See
A for more details.

1.4 Weighted Projective Space Interlude

As mentioned before, we don’t want to projectivize diagonal varieties in the standard way, as we
lose the "nice" zeta function. Instead, we make use of the fact that the diagonal variety (n0, ..., nr)
naturally embeds into P(w0, ...wr), where each weight wi = lcm(ni)/ni. One issue that arises here,
however, is that this weighted projective space may not always be well-formed (i.e any subset of r
weights must have gcd ).

Definition 1.4.1. We say an exponent tuple (n0, ..., nr) is primitive if ni | lcm({nj}j 6=i) for
all i. Consequently we may talk about primitive diagonal varieties.

The ambient weighted projective space of a diagonal curve with primitive exponents is naturally
well-formed because wi = N/ni = lcm(ni, nj)/ni = nj/ gcd(ni, nj) which is coprime to wj =
ni/lcm(ni, nj). In fact, something stronger is true.

Observation. Every well-formed projective space arises from a set of primitive exponents. Suppose
n0, ...nr was not primitive, then WLOG n0 - L0 := lcm(n1, ...nr). In particular, some prime power
pe - L0. However this means that pe | wi = n/ni for all i > 0, and so the weights are not coprime,
thus the space is not well-formed.

Generally when working with weighted projective space we only want to look at well-formed
cases. To deal with diagonal varieties that have non-primitive exponents, however, we use the
following result.

Proposition 1.4.2. Suppose X is the variety in weighted projective space over Fp defined by

xn0
0 + . . .+ xnr

r = 0

For each i between 0 and r, let li = lcm({nj}j 6=i) and n′
i = gcd(li, ni). Then the variety X ′ in

weighted projective space over Fp defined by

x
n′

0
0 + . . .+ xn′

r
r = 0

satisfies #X(Fq) = #X ′(Fq).
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Proof. See Theorem 1.1 of [Chu+] �

Since every weighted projective space is isomorphic to a well-formed space (see [Hos20]), the
variety X and X ′ in the above proposition are birationally isomorphic. As such, when continuing it
suffices to only consider primitive exponent tuples. This result also allows us to have a very simple
criterion for supersingularity of diagonal curves.

Proposition 1.4.3. If X : xn0
0 + · · · + xnr

r is such that gcd(n0, ni) = 1 for all i, then X is
supersingular.

Proof. By 1.4.2, once we reduce the exponents, the exponent of x0 will be 1. However this means
that, whatever the value of (x1, ..., xr) , there will be exactly one value of x0 that sets the polynomial
equal to 0. Thus, #X(Fq) = qr is the affine point-count of the variety. From what we saw in 1.1.3,
the zeta function for this variety is 1

1−qrt
, hence it is supersingular. �

1.5 Fermat Varieties

One of the major strides in understanding supersingular varieties was made by Shioda in his clas-
sification of Fermat varieties. We give an alternative proof of one the directions of his main result
using our Stickleberger criterion, to give a flavor of the types of arguments that will be seen in
Section 2.

Theorem 1.5.1. The Fermat variety F n
r is supersingular if and only if there exists v such that

pv ≡ −1 mod n

Proof. If pv ≡ −1 mod n then the order of p modulo n (i.e f) must be even.
Since we have:

s

(
(q − 1)µli

n

)
= (p− 1)

f−1∑
j=0

{
pjµli
n

}

we can substitute it in and factor out the (p− 1) of the double summation, meaning it remains for
us to show that:

r∑
i=0

f−1∑
j=0

{
pjµli
n

}
= f(r + 1)/2

for every µ ∈ (Z/nZ)×.
Breaking up the inner sum, we get

r∑
i=0

(f−2)/2∑
j=0

{
pjµli
n

}
+
{
pj+f/2µli

n

}

=
r∑

i=0

(f−2)/2∑
j=0

{
pjµli
n

}
+
{
pj+f/2µli

n

}
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Note that {{a} + {b}} = {a+ b}, which gives us:
{{

pjµli
n

}
+
{
pj+f/2µli

n

}}
=
{
pjµli(pf/2 + 1)

n

}

Since f is even, pf/2 ≡ −1 mod n and so n | (pf/2 + 1), and so the fraction in the brackets above is
an integer, so the fractional part is zero. This means the sum of the two fractional parts can only
be zero or one.

Note that for any combination, of µ, j and li, the value
{

pjµli
n

}
is never zero, since p and µ are

both coprime to n and li < n. Thus the sum of the two fractional parts in the expression cannot be
zero, so it must be one. There are f/2 terms in the inner summation and r + 1 terms in the outer
summation, giving us our desired equality.
For the reverse direction, refer to Section 3 of [SK79] �

Observation. Suppose X : (n0, ..., nr), Y : (m0, ...,mr) are two diagonal varieties of dimension
r− 1 such that each ni | mi. Then we have a surjective morphism Y → X given by (xi) 7→ (xmi/ni

i ),
and so supersingularity of Y implies supersingularity of X.

This gives us an easy way to rule out supersingularity of an arbitrary diagonal variety X. If p
is not a root of -1 modulo n, the lcm of the exponents, then F n

r is not supersingular and thus X
cannot be supersingular.

Question. Is every supersingular diagonal variety X covered by a supersingular Fermat?

The answer to this question in general is no.

Example 1.5.2. Pick primes r, s and an integer d such that r, s, d ≡ 1 mod p and p is a
primitive root modulo r and s. Then by a theorem of [Chu+],

X : xr
0 + xs

1 + xrd
2 + xsd

3

is supersingular over Fp. However, clearly the Fermat surface F rsd
3 is not supersingular, by

1.5.1.

However, we shall see that this converse implication is actually true most of the time in the case of
curves, i.e when r = 2. This will be our main result.

2. Classifying Supersingular Diagonal Curves

Our goal in this section will be to prove the following:
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Theorem 2.0.1 (Classification). Let (n0, n1, n2) be a primitive tuple. Then, over Fp, the curve
C : xn0

0 + xn1
1 + xn2

2 = 0 is supersingular if and only if either of the folllowing hold:

(1) one of the ni is 1

(2) F n
2 is supersingular for n = lcm(n0, n1, n2)

Using 3.2.2, we will see later that all the curves of genus g > 0 fall into case (2), and thus
Theorem 0.0.1 follows from this classification.

Outline of the Proof Subsection 2.1 will build up some notation and results on prime powers
modulo n to help simplify the later calculations. This subsection also classifies all possible primitive
exponent tuples. Subsection 2.2 then proves some lemmas that will allow us to conduct the final
casework to prove the theorem in 2.3.

2.1 S,N functions and Prime Powers

We use "primitive curve" to mean a curve with a primitive exponent tuple.

Proposition 2.1.1. Every primitive exponent tuple of a curve is of the form (drs, dst, drt) for
some pairwise coprime r, s, t.

Proof. Clearly picking any 4 integers d, r, s, t satisfying the above property produces a primitive
exponent set.
Conversely, suppose that n0, n1, n2 is a primitive exponent set. Let d = gcd(n0, n1, n2), r =
gcd(n0, n2)/d, s = gcd(n0, n1)/d, and t = gcd(n1, n2)/d. Simple calculation verifies that they
satisfy the desired equalities. �

To simplify a lot of the proofs and results of the next section, we introduce the following helpful
notations, which we denote the S-function and N -function, respectively.

Definition 2.1.2. Given a prime (power) p, a denominator n coprime to p, f := ordn(p), an
element µ ∈ (Z/nZ)× and integers l0, l1 ∈ (0, n), we write:

S(lk) :=
f−1∑
i=0

{
µpilk
n

}

N(l0, l1) := #
{
i : µpi(l0 + l1) ≥ n

}

In most cases the values of µ, p and n will either be obvious from context or won’t be relevant to
calculations involing these functions, and so they are omitted from notation.
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Proposition 2.1.3. (Basic properties of the S and N functions)

(a) S(l0) + S(l1) = S(l0 + l1) +N(l0, l1)

(b) For n a fixed denominator, S(a) = S(a + n) (i.e what really matters is the value of our
input modulo n)

(c) For n - a, we have f − S(a) = S(−a)

(d) If p is a root of −1 modulo n and n - a we have S(a) = f/2

(e) Suppose d | a, n, and n′ := n/d is such that p is a root of -1 modulo n′. Then S(a) = f/2.

Proof. a) and b) follow by simple inspection of definitions.

For c), we make the observation that 1 − {α} = {−α} for any α 6= 0. Thus:

f − S(a) = f −
f−1∑
i=0

{
µpia

n

}
=

f−1∑
i=0

1 −
{
µpia

n

}
=

f−1∑
i=0

{
−µpia

n

}
= S(−a)

where in the 3rd equality we can apply the identity because we know none of the terms are zero as
we imposed that n - a.

For d), since pv ≡ −1 mod n for some v minimal, note that p2v ≡ 1 and so it must be that
v = f/2. Thus pi ≡ −pi+f/2 mod qe. This gives us:

S(a) =
f−1∑
i=0

{
µpia

qe

}

=
(f−2)/2∑

i=0

{
µpia

qe

}
+
{
µpi+f/2a

qe

}

=
(f−2)/2∑

i=0
1 = f/2

For e), we can define a′ := a/d and write:

S(a) =
f−1∑
i=0

{
µpia

n

}

=
f−1∑
i=0

{
µpia′

n′

}

= f

f ′

f ′−1∑
i=0

{
µpia′

n′

}
= f

f ′

(
f ′

2

)
= f/2
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where the third line follows from the fact that each pi repeats itself modulo n′ with multiplicity f/f ′

and the last line follows from the observation that a′, n′ satisfy the conditions of property d). �

In the proof of the classification we will inductively build on results of supersingularity of Fermat
curves, F n

2 . Recalling Shioda’s condition of a prime p being a root of -1 modulo n, the following
results will prove useful in our argument.

Lemma 2.1.4. If n = a1 . . . am for am coprime integers and for all i 6= j there exists vi,j such
that pvi,j ≡ −1 mod aiaj then pv ≡ −1 mod n for v = lcm{ordai

(p)/2}.

Proof. We first make the observation that we can assume none of the ai are 2, since even if there
was, excluding it does not affect any part of the theorem statement.
Let fi := ordai

(p), hi := ν2(fi) (i.e the 2-adic valuation) and j be such that hj is maximal. For any
i 6= j let vi,j be as in the statement of the theorem. Note pvi,j ≡ −1 mod aiaj =⇒ pvi,j ≡ −1
mod ai, and thus fi | 2vi,j. Likewise fj | 2vi,j.
Consequently we can let vi,j = lcm(fi/2, fj/2), and we deduce that ν2(vi,j) = hj − 1. If hj > hi

then fi divides 2hj−hi−1fi which in turn divides vi,j. This would imply pvi,j ≡ 1 mod ai which is a
contradiction. Therefore hi = hj = ν2(vi,j) + 1 for all i, j.
Setting v := lcm{fi/2} then, we observe that for every i we have v/(fi/2) being an odd integer.
Thus:

pv ≡ (pfi/2)v/(fi/2) ≡ (−1)v/(fi/2) ≡ −1 mod ai

and by the Chinese remainder theorem pv ≡ −1 mod n. �

Corollary 2.1.4.1. If n = qe1
1 . . . qem

m for m ≥ 3 primes qi and pvi ≡ −1 mod n/qvi
i for all i

then pv ≡ −1 mod n where v = lcm{vi}.

2.2 Intermediary Results

All of the following results will be used in the full casework of the classification theorem.

Proposition 2.2.1. The curve x2a
0 + x2b

1 + x2c
2 = 0 is trivially supersingular over all primes p

if a, b, c are pairwise coprime.

Proof. First, n = lcm(2a, 2b, 2c) = 2abc as a, b, c are coprime. Then l0 = bck0, l1 = ack1, and
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l2 = abk2 with 0 < k0 < 2a, 0 < k1 < 2b, and 0 < k2 < 2c. Further, 2abc | (bck0 + ack1 + abk2) so

bck0 + ack1 + abk2 = 2abct
bck0 = 2abct− ack1 − abk2

bck0 = a(2bct− ck1 − bk2)

so a | k0, and by symmetry b | k1, c | k2 so k0 = a, k1 = b, and k2 = c. That is, li = abc for all i,
but then 2abc | 3abc which is a contradiction so there are no such l. Thus, this curve is vacuously
supersingular. �

Lemma 2.2.2. If xr
0 + xs

1 + xrs
2 = 0 for gcd(r, s) = 1 is supersingular the Fermat curve F rs

2 is
supersingular if and only F r

2 and F s
2 are supersingular.

Proof. We first show that supersingularity of xr
0 + xs

1 + xrs
2 implies that the Fermat curve F rs

2 is
supersingular iff a specially constructed variety X is supersingular. We will then prove that F r

2 , F
s
2

being supersingular imply the supersingularity of X, thereby showing the desired equivalence.

Suppose that xr
0 + xs

1 + xrs
2 = 0 is supersingular. Then the Stickleberger condition is true for all

l0, l1, l2 ∈ (0, rs) such that rs|l0 + l1 + l2, s|l0, r|l1, and µ ∈ (Z/rsZ)×.
Since l0 + l1 ≡ −l2 mod rs, we have, for all µ and i, that

{
µpi(l0+l1)

rs

}
+
{

µpil2
rs

}
= 1, since the sum

of the numerators in each fractional part must be an integer (note since rs - l2, it cannot divide
l0 + l1 either). Thus we get:

3f/2 = S(l0) + S(l1) + S(l2)
= N(l0, l1) + S(l0 + l1) + S(l2)
= N(l0, l1) + f

Thus, for any l0, l1 ∈ (0, rs) such that s | l0 and r | l1, it must hold that N(l0, l1) = f/2.

Consider the variety X defined by xr
0 + xr

1 + xr
2 + xs

3 + xs
4 + xs

5. Our set of possible numerators
for the Stickleberger sum is given by l0, . . . , l5 ∈ (0, rs) such that rs|∑ li, s|l0, l1, l2, r|l3, l4, l5. The
sum can be then written as:

5∑
i=0

S(li) =
2∑

i=0
S(li + li+3) − S(li, li+3)

Since li, li+3 ∈ (0, rs) satisfy s | li, r | li+3, we get that S(li, li+3) = f/2. Our sum then becomes:

3f/2 +
2∑

i=0
S(li + li+3)
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and X is supersingular iff the summation over S is 3f/2. Note that the tuple (l0+l3, l1+l4, l2+l5)
satisfy all the conditions for a tuple of the Fermat curve F rs

2 . Thus the supersingularity of X and
F rs

2 is equivalent.

Now assume that F r
2 , F

s
2 are supersingular. We will show that each term in the summation∑5

i=0 S(li) for our variety X is equal to f/2, thereby proving supersingularity of X.
Since s | lj for j ≤ 2 and rs/s = r, supersingularity of F r

2 implies the Shioda condition, i.e pv ≡ −1
mod r for some v. We can thus apply property e) from 2.1.3 to deduce S(lj) = f/2 for j ≤ 2. By
symmetry this equality also holds for j > 2, as desired. �

Corollary 2.2.2.1. If xr
0 + xs

1 + xrs
2 is supersingular over Fq for coprime r, s then ordrs(q) is

even.

Proof. In the proof of the above lemma we showed that N(l0, l1) = f/2. Since this is an integer, f
must be even. �

Lemma 2.2.3. For s odd, the curve C : x2
0 + xs

1 + x2s
2 is supersingular iff F 2s

2 is supersingular.

Proof. The Stickleberger numerators for our curve C will be of the form l0, l1, l2 ∈ (0, 2s) such that
s|l0, 2|l1, and 2s|∑ li. Necessarily, l0 = s, and l1 + l2 ≡ s mod 2s, and thus l2 must be odd. By
property e) of 2.1.3 we deduce that S(l0) = f/2. Supersingularity of C then tells us that that
S(l1)+S(l2) = f , which implies S(l1) = S(−l2), by property c) of 2.1.3. Observe this equality holds
for any l1, l2 that sum to s, since this condition along with l0 = s is both necessary and sufficient
for being a valid numerator tuple in the Stickleberger sum for C.
To prove supersingularity of the Fermat curve F 2s

2 covering C, we will show that for any lj ∈ (0, 2s)
that S(lj) = f/2. We already know this is true for lj = s. Otherwise from what we showed, we can
use properties of the S-function to deduce that:

S(lj) = S(lj − s) = S(lj + s) (2)
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since we only care about inputs of the S-function modulo 2s. Expanding this identity, we get:

S(lj) = S(lj + s)

=
f−1∑
i=0

{
µpi(lj + s)

2s

}

=
f−1∑
i=0

{
µpilj
2s + 1

2

}

= S(lj) + f/2 − #
{
i : µp

ilj
2s ≥ 1

2

}
=⇒ f/2 = #{i : 2µpilj ≥ 2s} = N(lj, lj)

This implies that for any lj 6= s, we have that 2S(lj) = S(2lj) − f/2. Using this as a base case, we
proceed show for all k that

2kS(lj) = S(2klj) + (2k − 1)f2 (3)

Inductively, we have:

2k+1S(lj) = 2S(2klj) + 2(2k − 1)f/2
= S(2k+1lj) + f/2 + (2k+1 − 2)f/2
= S(2k+1lj) + (2k+1 − 1)f/2

Now take e such that = 2e ≡ 1 mod s. We note that either 2elj is either equivalent to lj or lj + s

modulo 2s. In either case, applying the identity in (2) we have S(2elj) = S(lj). Applying (3), we
get:

2eS(lj) = S(2elj) + (2e − 1)f/2
= S(lj) + (2e − 1)f/2

=⇒ S(lj) = f/2

Therefore F 2s
2 is supersingular. �

2.3 Classification Theorem

To fully classify all curves we have to take into account all possible primitive exponent tuples. That
is, all possible (drt, dst, drs) for r, s, t coprime. We first tackle the case where d = 1, and t = 1 as
well.

Proposition 2.3.1. For gcd(r, s) = 1 and p a prime power the curve C : xr
0 + xs

1 + xrs
2 = 0

over Fp is supersingular if and only if F rs
2 is supersingular over Fp.

Proof. We split this up into 3 cases: 1) both r, s are prime powers, 2) one of them has multiple prime
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factors and 3) both have multiple prime factors. Each case will build inductively on the previous one.

Case 1: r, s prime powers
We claim in this case that p must be a negative root of -1 modulo both r and s.
By 2.2.2.1, f is even and thus either fr = ordr(p) is even or fs = ords(p) is even. If r, s are both odd
then WLOG fr is even and since r is a prime power, p must be a root of -1 modulo r. Otherwise,
WLOG s = 2e, and supersingularity of C implies that C ′ : xr

0 + x2
1 + x2r

2 is also supersingular.
By 2.2.3, F 2r

2 must be supersingular which then implies F r
2 is supersingular, and by the Shioda

condition p must be a root of −1 modulo r.
We proceed treating r as an odd prime and s as a prime power not equal to 2. Stickleberger for C
tells us that for all l0, l1, l2 ∈ (0, rs) such that rs|∑ li, s|l0, r|l1, f = ordrs(p) and µ ∈ (Z/rsZ)×:

3f/2 =
2∑

j=0
S(lj)

Note our condition implies l2 ≡ −l0 − l1 mod rs, so we have:

S(l1) =3f/2 − S(l0) − S(−l0 − l1)

Since s | l0 and r | l1, we get the functional equation:

S(ra1) = 3f/2 − S(sa0) − S(−ra1 − sa0)

for all 0 < a0 < r, and 0 < a1 < s. By property e) of 2.1.3, S(sa0) = f/2.
Applying the above equality and result c) of 2.1.3, our functional equation thus becomes:

S(ra1) = S(ra1 + sa0) (4)

for all 0 < a1 < s and 0 < a0 < r.
Consider the variety X : xr

0 + xr
1 + xrs

2 + xrs
3 = 0, which we claim is supersingular if C is

supersingular. The numerators in the Stickleberger sum are l0, . . . , l3 ∈ (0, rs) such that rs|∑ li

and s|l0, l1. Note this implies s|l2 + l3. Writing l2 = ra2 + sb2 and l2 = ra3 + sb3, we deduce that
a2 ≡ −a3 mod s, implying ra2 ≡ −ra3 mod rs.
By supersingularity of C we apply equation 4 to get:

S(l2) = S(ra2 + sb2) = S(ra2)

Similarly S(l3) = S(ra3), and so by property b) and c) of 2.1.3 we get S(l2)+S(l3) = S(l2)+S(−l2) =
f .
Moreover since s | l0, l1 we can apply property e) of 2.1.3 to deduce that S(l0) = S(l1) = f/2.
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Therefore our Stickleberger sum is:

S(l0) + S(l1) + S(l2) + S(l3) = f + S(l2) + S(−l2) = 2f

and thus X is supersingular.
We claim this implies F rs

2 (which covers our original curve C) is supersingular. Suppose that
there does not exist v such that pv ≡ −1 mod s. Let a be a primitive root modulo r and consider
the subgroupgroup H := 〈a mod r〉 × 〈p mod s〉 ⊆ (Z/rZ)× × (Z/sZ)× ∼= (Z/rsZ)×. Clearly
p ∈ H. Note (−1 mod r, 1 mod s) ∈ H, so if −1 ∈ H then (1 mod r,−1 mod q) ∈ H, which
would imply p is a root of ≡ −1 mod s, which is a contradiction. Therefore −1 /∈ H. Finally
clearly the map H ↪→ (Z/rsZ)× � (Z/rZ) is a surjection since (a mod r, 1 mod s) 7→ a mod r.
Note all of these conditions sastisfy Theorem 15.3 of [Chu+], implying X is not supersingular, and
we arrive at a contradiction. Therefore p must be a root of -1 modulo s.

We claim that all three terms in the Stickleberger sum of the Fermat curve covering C are equal
to f/2, implying supersingularity. If r or s divide li, using the fact that we just showed p is a root
of -1 modulo both of them, we can apply property e) of 2.1.3 to get that S(li) = f/2. Otherwise, let
li = rai + sbi. Define lj := −rai and lk := −sbi. Then li, lj, lk are numerators for the Stickleberger
sum of our original curve C, and by supersingularity we have:

3f/2 =S(li) + S(lj) + S(lk)
= S(rai + sebi) + S(−rai) + S(−sebi)
= S(li) + f/2 + f/2

=⇒ f/2 = S(li)

where the third line follows from property e) of 2.1.3. Thus F rs
2 is supersingular, as desired.

Case 2: r a prime power, s has multiple prime factors
First suppose s has only 2 distinct prime factors, i.e s = qe1

1 q
e2
2 for primes q1, q2. If C is supersingular

then so is xr
0 +xq

e1
1

1 +xrq
e1
1

2 = 0. By our base case this implies F rq
e1
1

2 is supersingular and thus so is F r
2 .

Given a0, a1 such that 0 < a0 < r and 0 < a1 < s, we note that the numerators l0 = sa0, l1 = ra1,
and l2 = −sa0 − ra1 satisfy the conditions of Stickleberger for our curve C. This gives us:

3f/2 = S(sa0) + S(ra1) + S(−sa0 − ra1)

Since p is a root of −1 mod r we apply property e) to see that S(sa0) = f/2 which gives us the
functional equation:

S(ra1) = S(ra1 + sa0)

By the exact same argument as in the case where s is a prime power, we deduce that the variety
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X : xr
0 + xr

1 + xrs
2 + xrs

3 is supersingular. This then implies that p is a root of −1 modulo s, again
by the same reasoning as before. Writing r = qe0

0 then rs = qe0
0 q

e1
1 q

e2
2 , then by supersingularity of

F rq
ei
i for i = 1, 2 we have that there exist vi such that pvi ≡ −1 mod rs/qei

i for all i, and thus there
exists v such that pv ≡ −1 mod rs by 2.1.4.1. Therefore F rs

2 is supersingular.

Now suppose s has more that three prime divisors. Let r = q0 and s = qe1
1 . . . qem

m . We wish
to show for each i that the curve F rs/q

ei
i

2 is supersingular, which will imply F rs
2 is supersingular by

2.1.4.1.
For i ≥ 1 the curve xq0

0 + x
s/q

ei
i

1 + x
rs/q

ei
i

2 = 0 is supersingular, and by the inductive hypothesis this
implies F rs/q

ei
i

2 is supersingular. Thus there exists vi such that pvi ≡ −1 mod rs/qei
i for each i ≥ 1.

For i = 0, we note that F rs/q
ei
i

2 being supersingular implies F s/q
ei
i

2 is supersingular. This means there
exist ui such that pui ≡ −1 mod s/qei

i and hence there exists v0 such that pv0 ≡ −1 mod s, as
desired. Thus F rs

2 is supersingular.

Case 3: r, s both have multiple prime factors
Now let r = qe1

1 · · · qen
n and s = q

en+1
n+1 · · · qen+m

n+m , and assume C is supersingular. For every i ≤ n

we have that the curve Ci : xq
ei
i

0 + xs
1 + x

q
ei
i s

2 = 0 is supersingular. By what we previously showed
this means F q

ei
i s

2 is supersingular, which implies that F s
2 is supersingular. Symmetrically, F r

2 is
supersingular. By 2.2.2 we deduce F rs

2 is supersingular. �

This result allows us to easily generalize to the case where we fix d = 1 and let t vary.

Corollary 2.3.1.1. For coprime r, s, t, the curve (rt, st, rs) is supersingular over Fp if and
only if F rst

2 is supersingular.

Proof. This curve being supersingular implies that (r, s, rs), (r, t, rt) and (s, t, st) are also all su-
persingular. By our result above, these imply F rs

2 , F rt
2 and F st

2 are all supersingular as well, which
means p is a root of -1 modulo all possible pairwise products of r, s, t. By 2.1.4 it is also a root of
minus -1 modulo rst, and so F rst

2 is supersingular over Fp, as desired. �

We now proceed to the full proof of the classification.

proof of 2.0.1. Case (2) of the theorem follows trivially from 1.4.3. Thus we assume C : xdrt
0 +xdst

1 +
xdrs

2 is supersingular, where none of the exponents are 1. The case of d = 1 is dealth with in 2.3.1.1.
As such we may assume d > 1.

Case 1: drst is a prime power
By primitivity, we deduce the exponent tuple is of the form (we, we+h, we+h) for a prime w, and
we wish to deduce Fwe+h

2 is supersingular. Supersingularity of this curve implies supersingularity of
Fwe

2 , which means p is a root of -1 modulo we, and so the order of p modulo we is even. If w is odd
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then that means p must also be a root of -1 modulo we+h, giving us our desired result. As such, we
assume w = 2.
Suppose first that e = 1, we proceed by induction on h. For h = 0 the result is immediate.
Otherwise, Stickleberger dictates that l0 = 2h, and since 2h+1 | ∑ li we must have that l1 + l2 ≡ 2h

mod 2h+1. By property e) of 2.1.3 we have that S(l0) = f/2, and consequently S(l1) = S(−l2).
Thus we are only concerned with the value of the Stickleberger numerators modulo 2h.
Let us write l1 = (2h + 1)a. If a is even then we write it as 2b. Noting that supersingularity of
(2, 2h+1, 2h+1) implies supersingularity of (2, 2h, 2h), we apply the inductive hypothesis to deduce
F 2h

2 is supersingular. From there, we apply property e) again to see that S(a) = S(2b) = f/2. Now
suppose that a is odd, then we note that{

µpia(2h + 1)
2h+1

}
=
{
µpia

2 + µpia

2h+1

}

Here we can apply the exact same trick we did in the proof of 2.2.3 to deduce that N(a, a) = f/2.
Continuing along the same proof method, we also deduce for all k that 2kS(a) = S(2ka)+(2k −1)f

2 ,
which then implies S(a) = f

2 for all a. Therefore F 2h+1
2 is supersingular.

Now suppose that e > 1, then x2
0 + x2e+h

1 + x2e+h

2 = 0 is supsersingular and F 2e+h

2 is supersingular
by changing variables e+ h → h.

For our next cases we assume that drst = ∏
qei

i has multiple prime factors. Note by Lemma
2.1.4 that if we can show that p is a root of minus one modulo qei

i q
ej

j for every pair (i, j) then it
follows that F drst

2 is supersingular. This will be our strategy.

Case 2A: drst has multiple prime factors, r, s = 1
Here our curve is of the form C : xd

0 + xdt
1 + xdt

2 = 0. We first only consider odd primes qe, q′f ||dt. If
either of them divide d, let it be q without loss of generality, supersingularity of C implies the curve
with exponents (q, q′, qq′) is supersingular, which implies F qq′

2 is supersingular by 2.3.1. Otherwise,
suppose q, q′ | t but neither of them divide d. Letting z be a prime factor of d, we deduce that
the curve with exponents (qq′, z, qq′z) is supersingular which implies supersingularity of F qq′z

2 and
hence of F qq′

2 . In either case, since q, q′ are both odd, if p is a root of -1 modulo their product it is
also a root of -1 modulo qeq′f for any powers, which is what we want.
Now let q be an odd prime factor of dt and 2 be the other one. Suppose 2e, qh||dt. If q | d then
the curve with exponents (q, 2e, 2eq) is supersingular and so F 2eq

2 is supersingular. Note if pv ≡ −1
mod 2eq then pvqh−1 ≡ −1 mod 2eqh, which implies 2eqh is also supersingular. Otherwise if q - d,
it must divide t. If e′ is such that 2e′||d, then supersingularity of C implies (2e′

, 2eqh, 2eqh) is su-
persingular. If e′ = e we are fine, so suppose e′ < e. The case where e′ = 0 reduces to a trivial
previous case so we can assume e′ is positive. In this case, this implies the curve C ′ with exponents
(2, 2eqh, 2eqh) is supersingular. Using the same trick as with the prime power 2 case, we deduce
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that for any Stickleberger numerator of C ′ that S(li) = f/2. As such, the same holds for any
Stickleberger numerator of F 2eqh

2 , implying supersingularity, which is what we wanted.
Thus, for every possible pair of prime factors qei

i , q
ej

j of dt, we showed that p is a root of -1 modulo
their product, and so F dt

2 is supersingular, as desired.

Case 2B: drst has multiple prime factors, r, s 6= 1
Here our curve C has exponents (drs, dst, drt). Let q, q′ be primes that divide drst and qe, q′f ||drst.
If both these powers divide d, then supersingularity of C implies supersingularity of the curve with
exponents (qe, q′f , qeq′f ), and consequently of F qeq′f

2 .
Otherwise, since r and s are coprime, we can assume without loss of generality that either they
both divide dr or one divides dr and the other divides ds. The former case implies supersingularity
of (qeq′f , s, qeq′fs), and the latter implies supersingularity of (qe, q′f , qeq′f ). In either case, F qeq′f

2 is
supersingular for every posssible pair of primes, and so F drst

2 is supersingular, as desired. �

3. Genera of Diagonal Curves

Recall that every curve has a non-negative genus that is birational-invariant.

Question. Does there exist a supersingular curve of every genus over every possible characteristic?

This question has been answered positively for g ≤ 4 (see [KHS20]), but to our knowledge there
is little to no literature on g > 5.
We will see that by limiting ourselves to diagonal curves, we can get nice lower bounds on the
density of primes over which a supersingular curve of genus g can be found. In particular, we
compute δ′(g), the density of primes over which a supersingular diagonal curve of genus g arises.

3.1 Smoothness

Proposition 3.1.1. A diagonal curve is smooth over a field of characteristic p if and only if p
does not divide any of its exponents.

Proof. Consider the general form of the curve

C : a0x
n0
0 + a1x

n1
1 + a2x

n2
2 = 0

over Fp. Without loss of generality we can assume a0 = a1 = a2 = 1 and the exponents are primitive
as every diagonal curve is isomorphic to such a curve over the algebraic closure, which preserves
smoothness when we base change back to the ground field. We have the canonical action on the
space A3 \ {0} by µN where N = lcm(n0, n1, n2) given by ζ · (x0, x1, x2) = (ζw0x0, ζ

w1x1, ζ
w2x2), and

the quotient P(w0, w1, w2) = (A3 \{0})/µN (where the weights wi = N/ni). The fixed points of this
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action are those for which ζwixi = xi. Without loss of generality, assume x0 6= 0 so that ζw0 = 1
or ζ ∈ µw0 . Then assume x1 6= 0 such that ζw1 = 1, which implies ζ ∈ µw1 . Since the exponents
are primitive, the weights are well-formed or are pairwise coprime, so ζ = 1. Hence the only fixed
points are those for which exactly one coordinate is nonzero, but that is not a point on C so it
misses all fixed points of the group action.
Hence we can apply the Jacobian criterion on an affine open set D(x0). Then C ∩D(x0) is given by
1+ym1

1 +ym2
2 = 0 where yi = xa0

i /x
ai
0 andmi = gcd(n0, ni). Then the Jacobian is [m1y

m1−1
1 ,m2y

m2−1
2 ].

Since p - n0, we have mi 6= 0 and if mi = 1 then miy
mi−1
i 6= 0, hence y1 = y2 = 0 but this is not a

point on C ∩D(x0), so it is smooth. The other patches are smooth by a symmetric argument. �

3.2 Genus Formula

By smoothness the geometric and arithmetic genus are the same, so we apply the ideas of [Hos20]
which gives a generalization of the degree-genus formula to weighted projective space via Riemann-
Hurwitz.

Theorem 3.2.1 (Hosgood). Let C = Cf ⊂ P(a0, a1, a2) be a nonsingular plane curve where f
is weighted-homogeneous of degree d and sufficiently general. Assume further that the straight
cover C is non-singular. Then,

gC = 1
a0a1a2

(
(d− 1)(d− 2)

2 −
[
b(π)

2 + 1 − a0a1a2

])
(5)

where the branching index b(π) is given by

b(π) = (d− 1)
3∑

i=1
(ai − 1) +

3∑
i=1

ai − 1 ai | d

a0a1a2 − 1 ai - d

Proof. See Theorem 5.3.7 of [Hos20]. �

The curve is sufficiently general in the sense of [Hos20] as for all i, ai = N/ni | N . Thus, we have
the following.

Corollary 3.2.1.1. The diagonal curve C : xn0
0 + xn1

1 + xn2
2 = 0 with primitive exponents has

gC = 1 + (n0 − 1)(n1 − 1)(n2 − 1) − (n0 + n1 + n2) + 1
2N (6)

Proof. Direct application of (5) with ai = N/ni, d = N , and b(π) = d(a0 + a1 + a2 − 3) �

Proposition 3.2.2. If C is a genus 0 diagonal curve with primitive exponents then C is given
by (1, n, n) for some n ≥ 1 or (2, 2, 2).
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Proof. Let (n0, n1, n2) be the exponents of C ordered smallest to largest. If the exponents are
(2, 2, 2) then the curve has genus zero by the degree-genus formula. If n2 ≤ 2 then the possible
curves are (1, 1, 1), (1, 2, 2), (1, 1, 2), (2, 2, 2) but note that (1, 1, 1) and (1, 2, 2) are of the supposed
form and (1, 1, 2) is not primitive, so we may assume n2 > 2. We want to show n0 = 1, so suppose
n0 > 1. Note that n1n2 − n1 − n2 = (n1 − 1)(n2 − 1) − 1 > 0 as n2 > 2 and n1 ≥ n0 > 1. Then

n0n1n2 − n0n1 − n0n2 − n1n2

2lcm(n0, n1, n2)
= −1

n0n1n2 − n0n1 − n0n2 − n1n2 = −2lcm(n0, n1, n2)
n0(n1n2 − n1 − n2) − n1n2 = −2lcm(n1, n2)

n1n2 − n1 − n2 − n1n2 < −2lcm(n1, n2)
n1 + n2 > 2lcm(n1, n2) ≥ 2n2

n1 > n2

This is a contradiction since we assumed n1 ≤ n2, and so n0 = 1. Then n1 | lcm(1, n2) = n2 and
n2 | lcm(1, n1) = n1 so n1 = n2 = n and we are done.

�

Proposition 3.2.3. Let C be a diagonal curve with primitive exponents (n0, n1, n2) in ascend-
ing order. Then if gC 6= 0 we have that

gC ≥ (n0 − 1)
2n0

n1

Proof. By 3.2.2 if gC ≥ 1 then n0 > 1. We use the genus formula as defined before:

gC = 1 + n0n1n2 − n0n1 − n0n2 − n1n2

2lcm(n0, n1, n2)

and without loss of generality we assume n0 ≤ n1 ≤ n2. By assumption of the exponent tuple being
primitive, we note that since n2 | lcm(n0, n1) we have that lcm(n0, n1, n2) = lcm(n0, n1). Since
gC ≥ 1, we have

n2(n0n1 − n0 − n1) − n0n1

2lcm(n0, n1)
≥ 0

and hence (n0n1 −n0 −n1) ≥ 0. Since n2 ≥ n1, we have n2(n0n1 −n0 −n1) ≥ n1(n0n1 −n0 −n1) so

gC ≥ 1 + n1(n0n1 − n0 − n1) − n0n1

2lcm(n0, n1)
= 1 + (n0 − 1)n2

1 − 2n0n1

2lcm(n0, n1)

Now (n0 − 1)n2
1 − 2n0n1 ≥ 0 if and only if (n0 − 1)n1 ≥ 2n0 or (n0 − 1)/(2n0) · n1 ≥ 1. Noting that

(n0 − 1)/(2n0) is increasing and n0 > 1, we have that this is true if and only if n1 ≥ 4.
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Then since lcm(n0, n1) ≤ n0n1, this implies

gC ≥ 1 + (n0 − 1)n2
1 − 2n0n1

2n0n1

≥ (n0 − 1)n2
1

2n0n1

≥ (n0 − 1)
2n0

n1

Now we treat the exceptional cases n1 = 2, 3. If n0 = 2 the only primitive curves are (2, 2, 2), (2, 3, 6).
The first has genus 0, and so is excluded, and the second has genus 1 which is greater than (n0 −
1)/(2n0) · n1 = 3/4. If n0 = 3 the only primitive curve is (3, 3, 3) which is genus 1, which is equal
to (n0 − 1)/(2n0) · n1 = 1. Thus we are done. �

This is significant because if n0 ≥ 2 this implies n0, n1 ≤ 4gC and thus n2 ≤ 16g2
C , which implies

there exists a supersingular diagonal genus gC ≥ 1 curve over Fp if and only if there is such a curve
with primitive exponents satisfying (n0, n1, n2) ≤ (4gC , 4gC , 16g2

C), which is a finite computation.

Example 3.2.4. If C is a diagonal elliptic curve then it is given by one of

C :


a0x

2
0 + a1x

3
1 + a2x

6
2 = 0

a0x
2
0 + a1x

4
1 + a2x

4
2 = 0

a0x
3
0 + a1x

3
1 + a2x

3
2 = 0

Proof. Finite computational check. �

3.3 Density of Primes for a Given Genus

Proposition 3.3.1. For every genus g, there are infinitely primes over which a curve of genus
g is supersingular, and infinitely many primes over which no curve of genus g is supersingular.

Proof. Take any genus-g curve C : (n0, n1, n2) with lcm n and consider the arithemtric progression
n − 1, 2n − 1, .... By Dirichlet’s theorem, it contains infinitely primes, and C is supersingular over
all of them by our classification.
Now consider all curves of genus g, and suppose they are each covered by a minimal Fermat of
degree Ni. Let N be the lcm of all these Ni. Then the arithmetic progression N + 1, 2N + 1, ...
also contains infinitely many primes, and none of the curves can be supersingular over any of them
because none of the Fermat’s covering them are supersingular. �

The above proposition essentially shows that we could never hope to fully answer the prime-
genus question by solely restricting to diagonal curves. However, we nonetheless can get nice lower
bounds on densities.
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Proposition 3.3.2. Let δ′(g) be the density of primes p for which there is at least one super-
singular diagonal curve of genus g in characteristic p. The denominator of δ′(g) is always a
power of 2.

Proof. Taking the group (Z/nZ)×, we write it as A × B, where A is the 2-group. Let R ⊆ Ai be
the roots of −1 modulo n that have order a power of 2. Then note R × B is exactly the set of all
possible roots of −1.
Let πi denote the surjection (Z/nZ)× � (Z/niZ)× for each i, and let Ai, Bi, Ri be the images of
A,B,R respectively. Then the density δ′(g) is:

δ′(g) = |⋃i(π−1(Ri ×Bi)|
|(Z/nZ)×|

= |(⋃i π
−1Ri) ×B|

|A×B|

= |(⋃i π
−1Ri)| · |B|

|A| · |B|
= |(⋃i π

−1Ri)|
|A|

and since A is a 2-group it has order a power of 2, which is what we wanted to show. �

[Wat84] computes the density of primes δ(m) over which a Fermat variety of degree m is super-
singular via the following result.

Proposition 3.3.3 (Waterhouse). If m is divisible by 4, then δ(m) = 2−d where 2d is the
highest power of 2 dividing ϕ(m). If m is not divisible by 4 and is divisible by s different odd
primes pi, then

δ(m) = (2sc − 1)/2d(2s − 1) (7)

where 2c is the highest power of 2 dividing all pi − 1.

We wish to extend this to compute δ′(g). Fix some g, and let (ai, bi, ci) for i = 0, . . . , k be the
primitive exponents whose diagonal curve Ci has genus gCi

= g. Let ni = lcm(ai, bi, ci) for all i,
and note that Ci is supersingular over Fp if and only if F ni

2 is supersingular, if and only if pv ≡ −1
(mod ni) for some v. This reduces to counting the proportion of primes p such that p ≡ a (mod ni)
where a is a root of −1 mod ni, for some i.

Corollary 3.3.3.1.
lim sup

g→∞
δ′(g) = 1

Proof. We make the basic observation that δ′(g) ≥ max{δ(ni)}i∈[0,k]. By picking g that is of the
form (p − 1)(p − 2)/2 for p a prime number that is one more than 2u for u large, then δ(m) is of
the form 2u−1

2u . Since u can get arbitrarily large, we can get arbitrarily close to 1, as desired. �
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This density can be computed explicity by letting n = lcm(ni)i=0,...,k and determining how many
residue (Z/nZ)× reduce to a root of −1 in (Z/niZ)× for some i, and then using Dirichlet to compute
the density of primes congruent to one of those residue classes. Appendix C contains the data for
these densities, and Appendix B contains the code for calculating them.

As of yet we seem to have no good way of lower-bounding these densities, as it requires under-
standing the size of the pre-images of all the Ri in proportion to the 2-group of Z/nZ. However,
based on our data so far we make the following conjecture:

Conjecture 3.3.4.
lim inf

g→∞
δ′(g) ≥ 1/2
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A. Supersingularity Computation

from sage . a l l import ∗
from sage . a r i t h . f u n c t i o n s import LCM_list

# C alc u la t e r e l e v a n t s−func t ion in S t i c k l e b e r g e r ’ s thm
def s (v , p , f ) :

q = p∗∗ f ;
return (p−1) ∗ sum( [ f r a c (p∗∗ i ∗ v ) for i in range (0 , f ) ] )

# Check modulo cond i t i on f o r L−t u p l e s
def c o n d i t i o n ( l , N, n , r ) :

for j in range (0 , r + 1 ) :
i f ( l [ j ] ∗ N[ j ] ) % n != 0 :

return False ;
return True ;

# Check i f covered by s u p e r s i n g u l a r fermat
def fermatCover (N, p ) :

n = LCM_list (N) ;
for v in range ( eu ler_phi (n ) ) :

i f power_mod(p , v , n) == Mod(−1 , n ) :
return True ;

return False ;

# Check i f one exponent i s coprime to the r e s t
def gcdCondit ion (N) :

for i in range ( len (N) ) :
coprime = True ;
for j in range ( len (N) ) :

i f i != j and gcd (N[ i ] , N[ j ] ) != 1 :
coprime = False ;

i f coprime :
return True ;

return False ;

# Check i f o f the form 2a , 2b , 2c f o r a , b , c pa i rw i se coprime
def quadr icCondit ion (N) :

i f len (N) == 3 :
i f N[ 0 ] % 2 == 0 and N[ 1 ] % 2 == 0 and N[ 2 ] % 2 == 0 :

a = N[ 0 ] / 2 ; b = N[ 1 ] / 2 ; c = N[ 2 ] / 2 ;
i f gcd ( a , b) == 1 and gcd ( a , c ) == 1 and gcd (b , c ) == 1 :

return True ;
return False ;

# Check i f the curve i s s i n g u l a r
def s i n g u l a r (N, p ) :

for i in range ( len (N) ) :
i f N[ i ] % p == 0 :

return True ;
return False ;

# Exclude cases we don ’ t care about
def i s T r i v i a l (N, p ) :

i f gcdCondit ion (N) or quadr icCondit ion (N) :
return True ;
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return False ;

# Reduce the exponent s e t to an e q u i v a l e n t s e t
def reduceExp (N) :

newN = [ 1 ] ∗ len (N) ;
for i in range ( len (N) ) :

Li = LCM_list (N [ : i ] + N[ i + 1 : ] ) ;
newN [ i ] = gcd ( Li , N[ i ] ) ;

return tuple (newN [ i ] for i in range ( len (N) ) ) ;

# Check i f N i s a s e t o f p r i m i t i v e ( reduced ) exponents
def pr imit iveExp (N) :

return reduceExp (N) == N;

#Returns i f a d iagona l hypersur face with exponent l i s t N i s s u p e r i n g u l a r over F_p
def s u p e r s i n g u l a r (N, p ) :

i f i s T r i v i a l (N, p ) :
return True ;

r = len (N) − 1 ;
n = LCM_list (N) ;
f = Mod(p , n ) . m u l t i p l i c a t i v e _ o r d e r ( ) ;
q = p∗∗ f ;
# Create l i s t o f t u p l e s {L_0 , . . . L_r} to i t e r a t e over
n_set = [ i for i in range (1 , n ) ] ;
L0 = Tuples ( n_set , r + 1 ) ;
L = [ l for l in L0 i f (sum( l ) % n == 0 and c o n d i t i o n ( l , N, n , r ) ) ] ;
# Check cond i t i on f o r each t u p l e
value = ( r +1)/2 ∗ (p−1) ∗ f ;
for l in L :

for m in [ i for i in range (1 , n ) i f gcd ( i , n ) == 1 ] :
i f sum( [ s (m ∗ l [ i ] / n , p , f ) for i in range (0 , r + 1 ) ] ) != value :

return False ;
return True ;
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B. Genus Computation

from sage . a l l import ∗
from sage . a r i t h . misc import is_prime_power

# Compute the genus o f a curve with exponents N i f p o s s i b l e , or re turn −1
def genus (N) :

i f pr imit iveExp (N) :
return 1 + ( (N[0] −1) ∗ (N[1] −1) ∗ (N[2] −1) − N[ 0 ] − N[ 1 ] − N[ 2 ] + 1)/(2 ∗ LCM_list (N) ) ;

return −1;

# Give a genus g , re turn a l i s t o f a l l the p r i m i t i v e exponents o f curve with the g iven genus
def genusExponents ( g ) :

g_exps = [ ] ;
for a in range (1 , 4∗g + 1 ) :

for b in range ( a , 4∗g + 1 ) :
for c in d i v i s o r s ( lcm ( a , b ) ) :

i f c >= b :
N = ( a , b , c ) ;
i f genus (N) == g :

g_exps . append (N) ;
return g_exps ;

# Return the m u l t i p l i c a t i v e group o f Z/mZ as a s e t
def mult (M) :

mult = [ ] ;
for a in range (1 , M) :

i f gcd ( a , M) == 1 :
mult . append ( a ) ;

return mult ;

# Reduce the l i s t o f N to N/2 i f e x a c t l y one f a c t o r o f 2 d i v i d e s N
def reduce2Factor ( N l i s t ) :

r e s u l t = [ ] ;
for N in N l i s t :

i f N % 2 == 0 and (N/2) % 2 == 1 :
r e s u l t . append (N/ 2 ) ;

else :
r e s u l t . append (N) ;

return r e s u l t ;

# I f an N in N l i s t i s an odd prime power , reduce i t to the prime
def reducePrimePower ( N l i s t ) :

r e s u l t = [ ] ;
for N in N l i s t :

N = ZZ(N) ;
t = N. is_prime_power ( get_data = True ) ; # returns (p , k ) where N = p^k
i f t [ 1 ] != 0 and t [ 0 ] % 2 == 1 :

r e s u l t . append ( t [ 0 ] ) ;
else :

r e s u l t . append (N) ;
return r e s u l t ;

# Remove anything from N l i s t t h a t i s a m u l t i p l e o f something e l s e
def removeMult ip les ( N l i s t ) :

r e s u l t = [ ] ;
for i in range ( len ( N l i s t ) ) :
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mult = False ;
for j in range ( len ( N l i s t ) ) :

i f i != j and N l i s t [ i ] != N l i s t [ j ] and N l i s t [ i ] % N l i s t [ j ] == 0 :
mult = True ;

i f not mult :
r e s u l t . append ( N l i s t [ i ] ) ;

return r e s u l t ;

# Reduce the l i s t o f congruences we have to check
def reduceNList ( N l i s t ) :

N l i s t = reduce2Factor ( N l i s t ) ;
N l i s t = reducePrimePower ( N l i s t ) ;
N l i s t = removeMult ip les ( N l i s t ) ;
return N l i s t ;

# Given a l i s t o f exponents f o r genus g , compute f r a c t i o n o f primes which are root o f −1 mod a Fermat cover ing smth in the l i s t .
def rootRes idues ( g ) :

N l i s t = [ LCM_list (N) for N in genusExponents ( g ) ] ;
N l i s t = reduceNList ( N l i s t ) ;

M = 1 ;
for N in N l i s t :

M = lcm (M, N) ;

r e s i d u e s = [ ] ;

for a in mult (M) :
for N in N l i s t :

i f a not in r e s i d u e s :
f = Mod( a , N) . m u l t i p l i c a t i v e _ o r d e r ( ) ;
i f f % 2 == 0 and power_mod( a , f /2 , N) == N − 1 :

r e s i d u e s . append ( a ) ;

return len ( r e s i d u e s )/ euler_phi (M) ;
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C. Genus Density Table

g δ′(g) g δ′(g) g δ′(g)
1 3/4 11 39/64 21 97/128
2 7/8 12 61/64 22 39/64
3 3/4 13 21/32 23 17/32
4 7/8 14 101/128 24 225/256
5 5/8 15 217/256 25 9/16
6 31/32 16 127/128 26 57/64
7 9/16 17 11/32 27 61/128
8 31/32 18 57/64 28 7/8
9 47/64 19 41/64 29 37/64
10 3/4 20 235/256 30 3793/4096
31 1153/2048 41 147/256 51 367/512
32 1223/2048 42 ? 52 7/8
33 701/1024 43 27/64 53 5/8
34 15/32 44 115/128 54 ?
35 19/32 45 ? 55 ?
36 255/256 46 473/512 56 ?
37 141/256 47 29/128 57 1015/2048
38 53/128 48 2023/2048 58 85/128
39 177/256 49 2217/4096 59 39/256
40 15/16 50 1707/2048 60 ?
61 139/256 71 345/1024 81 ?
62 53/64 72 ? 82 1251/2048
63 ? 73 267/512 83 151/256
64 21/32 74 833/1024 84 ?
65 173/256 75 ? 85 ?
66 ? 76 ? 86 13/16
67 1021/2048 77 81/256 87 ?
68 119/128 78 ? 88 ?
69 ? 79 65/128 89 41/64
70 ? 80 ? 90 ?

Table 1: Densities of genera g diagonal curves supersingular over Fp. The squares without a value
have LCMs of the Fermats too large for our desktop computers to run through in a reasonable time.
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