
PSPACE-hardness of Two-Player Games

Ryan Catullo, Tanvi Deshpande

February 2024

Contents

1 Introduction . 1
1.1 Definitions . 3
2 Two-player Formula Games 3
2.1 True Quantified Boolean Formulas 3
2.2 Geography . 7
3 PSPACE-hardness of Go 9
3.1 Rules . 10
3.2 Hardness . 11

Acknowledgments
The authors would like to thank Professor Li-Yang Tan for his guidance on navigating this
project, as well as our peers in CS254 who reviewed and provided useful comments this
paper.

1. Introduction
One of the more interesting applications of complexity theory is its application to unex-
pected languages. A good example of this idea is applying the theory to languages of
complex two-player games, like chess.
One game of interest is Go, a board game played by over 46 million people worldwide for
the past 2,500 years. Go is played on a 19 × 19 board, and, at a high level, involves two
players claiming territory by placing stones on the board in sequence (Fig. 1).
Games such as chess and Go are typically played on constant-size boards and thus are
theoretically solvable in constant space. However, even given the existence of machine-
learning algorithms such as AlphaGo that have become competitive against human players,
we still have yet to find practical algorithms (beyond considering every possible sequence of

1

1 INTRODUCTION 2

Figure 1: An example Go game.

moves) for many such games that can determine the existence of winning strategies given
a game position. As the ability to play complex reasoning games is considered by many to
be a crucial step towards artificial general intelligence, understanding how “difficult” these
games are is not only theoretically compelling but also pertinent to real-life applications.
While the set of possible real-life game positions typically has constant size due to fixed
board sizes, we can consider generally for a game 𝐺 the language consisting of inputs (like
the position of pieces on a chess board or stones on a Go board) of variable size, such that
Player 1 has a winning strategy.
Some natural questions arise regarding these languages. What time or space complexity
classes do they lie in? Are any of them complete with respect to that class? This is akin
to asking “how computationally hard is it to develop a winning strategy for these games?”
Such questions can help us understand the difficulty of creating algorithms for these games
in real-life settings, and, at the very least, lead to compelling questions and results—such
as which of these games are PSPACE-hard or complete.
In this project, we will examine several two-player games, including TQBF, Geography,
and Go. Amazingly, each of these games is either PSPACE-hard or complete (depending
on whether the number of moves in the game is polynomially bounded: in some games,
like chess and Go, the number of moves can be exponential).
The general strategy for doing this is by reducing the problem to 𝐺𝜔, which is the language
of Boolean formulas where, when players take turns assigning values to variables, Player 1
has a strategy for assigning variables such that the formula is satisfied after all variables are
assigned. This is like playing a game on a Boolean formula in the following sense. Given
a formula 𝜑 on variables 𝑥1…𝑥𝑛, a winning strategy is the existence of some assignment
for 𝑥1 such that for all assignments 𝑥2, there exists 𝑥3 such that for all 𝑥4, etc... such that
𝜑(𝑥1,… , 𝑥𝑛) = 1.
Essentially, Player 1 plays the odd variables and Player 2 the even ones, and for any

2 TWO-PLAYER FORMULA GAMES 3

choice Player 2 makes, Player 1 should be able to make a choice that leads to a satisfying
assignment. In the language of Boolean operators,

∃𝑥1∀𝑥2∃𝑥3∀𝑥4…𝑥𝑛 ∶ 𝜑(𝑥1,… , 𝑥𝑛) = 1

This language is an analogue to SAT for PSPACE (the canonical PSPACE-complete prob-
lem); it is easy to see how this could, intuitively, be extended to all two-player turn-based
games: if we are considering positions for which Player 1 has a winning strategy, they
should have a valid (winning) response for all possible moves played by Player 2.
1.1. Definitions
We start by standardizing the definitions and terminology that we use throughout the
paper.
We restrict our attention to two-player games, with players denoted by Player 1 and Player
2. Let 𝐺 be a game: constraints on the set of inputs, and a set of rules that Player 1 and
Player 2 must adhere to. We use the term general game to refer to all possible inputs over
a rule set, for example all possible positions of pieces on the chess board is a general chess
game. By a specific game, we mean one where a particular input 𝐴 is provided.

Definition 1.1 For a general game 𝐺, we define

𝐿(𝐺) = {𝐴 ∶ There is a winning strategy for Player 1 using the rules of 𝐺 on 𝐴,}

where 𝐴 is a specific game input.

We consider games in which there are no draws, meaning that 𝐿(𝐺) is the set of inputs
for a game on which there is a winning strategy for Player 2.
Like NP-complete problems, PSPACE-complete problems are problems in PSPACE that
every other problem in PSPACE can be polynomial-time reduced to.

Definition 1.2 (Log-space reducibility) Given two problems 𝐴,𝐵, we say that 𝐵 is log-
space reducible (or log-reducible) to 𝐴 if there is some log-space function 𝑓 such that for
all 𝑤, 𝑤 ∈ 𝐵 ⟺ 𝑓(𝑤) ∈ 𝐴.

Remark Log-space reducibility implies polynomial-time reducibility; therefore, showing
that a given game is PSPACE-complete with respect to log-space reductions is a stronger
condition than showing PSPACE-completeness (with poly-time reductions).

2. Two-player Formula Games
2.1. True Quantified Boolean Formulas
As was described in the introduction, 𝐺𝜔 is a game played using a Boolean formula 𝜙 and
a list of its variables 𝑥1,… , 𝑥𝑛. Players take turns assigning each subsequent variable to a
value, and Player 1 wins if, at the end, the given assignment of variables satisfies 𝜙.

2 TWO-PLAYER FORMULA GAMES 4

Formally, let 𝑥1,… , 𝑥𝑛 be Boolean variables for 𝑛 ≥ 1 and define

𝐺𝑛 = {𝜑 ∣ ∃𝑥1∀𝑥2∃𝑥3…𝑄𝑛𝑥𝑛 such that 𝜑(𝑥1,… , 𝑥𝑛) = 1}

Here, 𝑄𝑛 = ∃ if 𝑛 is odd and 𝑄𝑛 = ∀ if 𝑛 is even. Additionally, 𝜑 is assumed to be a
Boolean formula in 𝑥1,… , 𝑥𝑛 where the only operations used are ∨,∧, ¬. More, generally,
we define the following set.

𝐺𝜔 =
∞
⋃
𝑛=1

𝐺𝑛 (1)

This language is also called TQBF, which stands for true quantified Boolean formula, or
appropriately QSAT, since it is the analogue to SAT for formulas with quantifiers. We
show that, in further analogy to SAT, this problem is the ”canonical” PSPACE-complete
problem. Note that any quantified Boolean formula is in 𝐺𝜔 by introducing ”dummy vari-
ables.” For example, the formula ∃𝑥1∃𝑥2𝜑(𝑥1, 𝑥2) is the same as ∃𝑥1∀𝑦1∃𝑥2𝜑(𝑥1, 𝑥2) ∈ 𝐺𝜔,
so we can think of 𝐺𝜔 as just all quantified Boolean formulas.

We want to show first that 𝐺𝜔 is in PSPACE in order to show completeness. Thus, we
have the following theorem.

Theorem 2.1 𝐺𝜔 ∈ PSPACE.

Proof. It suffices to give a polynomial space algorithm that determines 𝐺𝜔. First, we can
reduce any quantified Boolean formula 𝜑 to one in CNF, since SAT ≡𝑃 3SAT and this is
just a subset of that problem and polynomial time reducibility preserves polynomial space
algorithms.

Suppose 𝜑 has 𝑛 variables and 𝑚 clauses. Note that each clause has at most 𝑛 variables,
so we wish to show the satisfiability of 𝜑 can be decided in poly(𝑛,𝑚) space. Let 𝑆(𝜑, 𝑖)
be the space required to determine

𝜑𝑖(𝜀1,… , 𝜀𝑛−𝑖) = 𝑄𝑛−𝑖+1𝑥𝑛−𝑖+1…𝑄𝑛𝑥𝑛𝜑(𝜀1,… , 𝜀𝑛−𝑖, 𝑥𝑛−𝑖+1,… , 𝑥𝑛)

That is, 𝜑 where we determine the first 𝑛 − 𝑖 variables to be 𝑥𝑖 = 𝜀𝑖. Here, as before,
𝑄𝑗 = ∃ if 𝑗 is odd and ∀ if 𝑗 is even. The total space complexity is then 𝑆(𝜑, 𝑛). In the
base case, where 𝑖 = 0, we have fixed 𝑥1 = 𝜀1,… , 𝑥𝑛 = 𝜀𝑛 so we just have to evaluate an
𝑛-variable, 𝑚-clause Boolean formula, which can be done in space 𝑆(𝜑, 0) = 𝑂(𝑚𝑛).
For the inductive step, suppose 𝜑0,… , 𝜑𝑖−1 are all computable in polynomial space. Then
we recursively evaluate 𝜑𝑖 with 𝜀𝑛−𝑖 = 1 and 𝜀𝑛−𝑖 = 0. If 𝑄𝑛−𝑖 = ∀, then 𝜑 is true if and
only if 𝜑𝑖−1 is true with both 𝜀𝑛−𝑖 = 1 and 𝜀𝑛−𝑖 = 0, and if 𝑄𝑛−𝑖 = ∃ then it is true if and
only if at least one of the recursive calls is true. However, we reuse the space we used to
compute 𝜑𝑖 with 𝑥𝑛−𝑖 = 1 to compute 𝜑𝑖 with 𝑥𝑛−𝑖 = 0. Therefore, the space complexity
satisfies

𝑆(𝜑, 𝑖) = 𝑆(𝜑, 𝑖 − 1) + 𝑂(𝑚𝑛)

2 TWO-PLAYER FORMULA GAMES 5

since it takes 𝑂(𝑚𝑛) space to write down the partially evaluated formula for 𝜑𝑖−1 with our
choices of 𝜀1,… , 𝜀𝑛−𝑖. Therefore, 𝑆(𝜑, 𝑖) = 𝑂(𝑚𝑛2) is polynomial in the input length, so
𝐺𝜔 ∈ PSPACE.

For the next part, we wish to show completeness. We will follow the proof given in [SM73].
The general idea is as follows. Suppose 𝐴 ∈ PSPACE, so that 𝐴 is determined by some
deterministic Turing machine 𝑀 with 𝑂(𝑛𝑘) space on inputs of length 𝑛 for some 𝑘 ≥ 1.
The key insight is that configurations of the Turing machine can be encoded as Boolean
formulas.
Let 𝐶,𝐶′ be two configurations of 𝑀 , and 𝑡 ∈ ℕ. We want to define 𝜑𝑡(𝐶,𝐶′) to be a
quantified Boolean formula which is true if and only if 𝑀 can go from 𝐶 to 𝐶′ in at most
2𝑡 timesteps. The reason why is the following. If 𝐶start is the starting configuration, and
𝐶accept is the accepting configuration, then there is some 𝑇 bounded by a function in 𝑛
which is the most number of steps it takes to get from 𝐶start to 𝐶accept. Then 𝑥 ∈ 𝐴 if and
only if 𝜑𝑇 (𝐶start, 𝐶accept) = 1, which gives us our reduction 𝐴 ≤𝑃 𝐺𝜔.

Theorem 2.2 𝐺𝜔 is PSPACE-complete with respect to poly-time reductions.

Proof. As before, let 𝐴 ∈ PSPACE be determined by 𝑀 , with alphabet Γ, states 𝑄,
transition function 𝛿, a single read tape with input 𝑥 written on it of length 𝑛, and a single
write tape. We will define 𝜑𝑡(𝐶,𝐶′) recursively, which is a quantified Boolean formula
satisfied if and only if 𝑀 transitions from 𝐶 to 𝐶′ in at most 2𝑡 timesteps.
A configuration 𝐶 describes the contents of 𝑀 at a timestep 𝑖 on an input 𝑥. Specifically,
𝐶 = (𝑞, 𝑃 , 𝛾1,… , 𝛾𝑠(𝑛)) where 𝑠(𝑛) = 𝑂(𝑛𝑘) is the space of 𝑀 , 𝑞 ∈ 𝑄 is the state at time 𝑖,
𝑃 is the position of the head at time 𝑖, and 𝛾1,… , 𝛾𝑠(𝑛) are the symbols on 𝑀 ’s write tape
at time 𝑖. Note that 𝜑0(𝐶,𝐶′) is 1 if and only if 𝛿 applied to 𝑀 with 𝐶’s configuration
yields 𝐶′’s configuration, i.e. they are 1 timestep away. It will be a conjunction of a con-
stant number of CNF formulas, each of which is polynomial length in 𝑛 and computable
in polynomial time.

How do we check that 𝐶′ is one timestep away from 𝐶? First, we want that for 𝑗 ≠ 𝑃 , we
have 𝛾𝑗 = 𝛾′

𝑗 since transitioning only writes to the part of the tape that the head points
to, i.e. 𝑃 . In the case 𝑗 = 𝑃 , we want that the state is moved to 𝑞′ when 𝛿 is applied to
𝑞, 𝑥𝑃 , 𝛾𝑃 , where 𝑥𝑃 is the symbol on the read-only input tape at position 𝑃 , and that 𝛾𝑃 ′

is written on the tape, and the head moves to 𝑃 ′. We can represent these requirements as
Boolean formulas which are computable in polynomial time, since the same result which
is used in the proof of Cook-Levin applies here.
For example, if we represent 𝛾𝑗 and 𝛾′

𝑗 as bitstrings, which we can do in a constant number
of bits since Γ is finite, and let 𝑥𝑖 and 𝑦𝑖 be Boolean variables representing the bits of 𝛾𝑗
and 𝛾′

𝑗, then
𝐹(𝛾𝑗, 𝛾′

𝑗) = ¬(𝑥0 ⊕ 𝑦0) ∧ … ∧ ¬(𝑥𝑟 ⊕ 𝑦𝑟) = 1
if and only if 𝛾𝑗 = 𝛾′

𝑗, and this can be expressed as a CNF formula. Similarly, since

2 TWO-PLAYER FORMULA GAMES 6

𝛿, 𝑞, 𝑥𝑃 , 𝛾𝑃 can all be specified in a constant number of bits, there is a constant-length
CNF formula 𝐹 such that 𝛿(𝑞, 𝑥𝑃 , 𝛾𝑃) = 𝑞′ if and only if 𝐹(𝑞′, 𝛿, 𝑞, 𝑥𝑃 , 𝛾𝑃) = 1, and the
same holds for 𝛿(𝑞, 𝑥𝑃 , 𝛾𝑃) writing 𝛾𝑃 ′ on the tape if and only if 𝐹(𝛾𝑃 ′, 𝛿, 𝑞, 𝑥𝑃 , 𝛾𝑃) = 1.
Similar logic holds for computing 𝑃 ′, except now it is encoded by log 𝑠(𝑛) = 𝑂(log𝑛) bits
so 𝐹(𝑃 ′, 𝛿, 𝑞, 𝑥𝑃 , 𝛾𝑃) is length 𝑂(log𝑛). By taking the conjuction of all of these formulas,
we obtain a CNF formula 𝜑0(𝐶,𝐶′) of length 𝑂(𝑛𝑘) such that 𝜑0(𝐶,𝐶′) = 1 if and only
if 𝐶 is 1 timestep away from 𝐶′.

Now for the recursive step, the key is to guess some state in the middle of 𝐶 and 𝐶′.
Namely, we let 𝜑𝑡 be the following quanitied Boolean formula.

𝜑𝑡(𝐶,𝐶′) = ∃𝐶″𝜑𝑡−1(𝐶,𝐶″) ∧ 𝜑𝑡−1(𝐶″, 𝐶′)

That is, there is some configuration 𝐶″ that is 2𝑡−1 timesteps away from 𝐶, and 2𝑡−1

timesteps away from 𝐶′, such that 𝐶 is 2∗2𝑡−1 = 2𝑡 timesteps away from 𝐶′ by definition.
The issue is that the length of this formula does not grow like a polynomial in 𝑛. Instead,
we make the following equivalent definition.

𝜑𝑡(𝐶,𝐶′) = ∃𝐶″ ∀𝐷1 ∀𝐷2 such that
[(𝐷1 = 𝐶 ∧𝐷2 = 𝐶″) ∨ (𝐷1 = 𝐶″ ∧𝐷2 = 𝐶′)] ⟹ 𝜑𝑡−1(𝐷1,𝐷2)

Why is this equivalent? Note that the above implication is true if and only if both impli-
cations below hold.

(𝐷1 = 𝐶 ∧𝐷2 = 𝐶″) ⟹ 𝜑𝑡−1(𝐷1, 𝐷2)
(𝐷1 = 𝐶″ ∧𝐷2 = 𝐶′) ⟹ 𝜑𝑡−1(𝐷1, 𝐷2)

Therefore, this is saying if 𝐷1 = 𝐶 and 𝐷2 = 𝐶″, then there is a path of length 2𝑡−1 from
𝐶 to 𝐶″, and if 𝐷1 = 𝐶″ and 𝐷2 = 𝐶′ then there is a path of length 2𝑡−1 from 𝐶″ to 𝐶′.
By the same logic as before, this is true if and only if 𝐶″ is the midpoint, i.e. there is a
path of length 2𝑡 from 𝐶 to 𝐶′. Further, the length of this formula

𝐿(𝑡) = 𝐿(𝑡 − 1) + 𝑂(𝑛𝑘) = 𝑂(𝑡𝑛𝑘)

where the latter part is the length required to specify the configurations 𝐶,𝐶″, 𝐶′.

Now we can consider what the maximum value of 𝑇 is, i.e. the most steps it takes to get
from 𝐶start to 𝐶accept. There are 𝑂(𝑛𝑘) bits of memory used by 𝑀 , and therefore 2𝑂(𝑛𝑘)

different configurations. Therefore, there at most that many steps between start and accept
configurations if there is such a path for a given input 𝑥, and so it follows that 𝑇 = 𝑂(𝑛𝑘).
That is, the length of 𝜑𝑇 (𝐶start, 𝐶accept) is 𝑂(𝑛2𝑘) which is polynomial in 𝑛. Therefore, we
have shown the existence of a function 𝑓 such that 𝑥 ∈ 𝐴 if and only if 𝑓(𝑥) ∈ 𝐺𝜔, namely
𝑓(𝑥) = 𝜑𝑇 (𝐶start, 𝐶accept), and further that 𝑓 is computable in polynomial time. It follows
that 𝐺𝜔 is PSPACE-complete.

2 TWO-PLAYER FORMULA GAMES 7

Recall that, for a game 𝐺, 𝐿(𝐺) is the language of inputs for 𝐺 such that there is a
winning strategy for Player 1. This is where the notation for 𝐺𝜔 comes in, since any
Boolean formula 𝜑 can be turned into an input for 𝐺𝜔 where Player 1 chooses the odd
variables and Player 2 chooses the even ones. We denote this language by 𝐿𝜔 = 𝐿(𝐺𝜔),
and the above theorem tells us in fact that 𝐿𝜔 is PSPACE-complete.
2.2. Geography
In this subsection, we introduce Geography, a game inspired by the verbal game in which
players take turns naming cities, with each subsequent city’s first letter matching the
previous city’s last letter. For example, the following would be a valid Geography game.

Austin → Nashua → Albany → York → Kansas → …

The game continues until one of the players can’t name a city, and whoever can’t name a
city loses.
We can generalize the game in the following way. For us, Geography is a game played on
a directed graph 𝐺 with a given starting vertex 𝑠, which we represent by an ordered pair
(𝐺, 𝑠). Players take turns moving from the current vertex along an edge to a new vertex,
where each directed edge can be used exactly once until one player has no valid moves (in
which case they lose). In the analogy with the above game, for instance, 𝐺 would consist
of vertices labeled with city names, where we have a directed edge from City A to City B
if the first letter of 𝐵 is the last letter of 𝐴.

We first want to show that 𝐿(GEOGRAPHY) is in PSPACE by demonstrating some
algorithm for it. This is essentially the same as the algorithm given for 𝐺𝜔, and the reason
is that it applies in full generality to all games of this form.

Theorem 2.3 𝐿(GEOGRAPHY) ∈ PSPACE.

Proof. Let (𝐺, 𝑠) be our graph and starting vertex. Let 𝑛 be the largest integer such that
there is a finished game

𝑠 → 𝑣1 → 𝑣2 → … → 𝑣𝑛
where 𝑣𝑛 has no outgoing edges. There is some finite 𝑛 for which this is true since the path
is of length at most |𝐸| if no two edges are used twice. As per usual, Player 1 has chosen
𝑣𝑖 for 𝑖 odd and Player 2 has chosen for 𝑖 even. If 𝑛 is odd, we want to verify Player 2 has
no more moves, and if 𝑛 is even we want to verify Player 1 has no more moves.
Suppose without loss of generality that 𝑛 is odd. Then to verify that Player 1 has won,
we just need to check that there are no outgoing edges from 𝑣𝑛 that are not already used.
This can be done in polynomial space, since there are 𝑛 = 𝑂(|𝐸|) edges used and we can
loop through all edges outgoing from 𝑣𝑛 and check if that edge is already used, hence the
total algorithm runs in 𝑂(|𝐸|) space. Therefore, 𝑆(𝐺, 𝑛) = 𝑂(|𝐸|) where 𝑆(𝐺, 𝑖) is the
space required to compute whether Player 1 wins with a path of length 𝑖 already decided.

2 TWO-PLAYER FORMULA GAMES 8

Now we proceed by induction to compute 𝑆(𝐺, 0), the space required to determine if Player
1 wins. Suppose we have a sequence of moves

𝑠 → 𝑣1 → 𝑣2 → … → 𝑣𝑖
where Player 1 plays odd indices and Player 2 even indices, and suppose without loss of
generality that 𝑖 is odd. Then we can compute all outgoing unused edges from 𝑣𝑖 in 𝑂(|𝐸|)
space as before. If there are none, Player 1 wins. Otherwise, for every outgoing edge, add
it to the path and compute whether Player 1 wins recursively, which can be done in space
𝑆(𝐺, 𝑖 + 1). If none of the outgoing paths result in Player 1 winning, then Player 2 wins.
The space then satisfies

𝑆(𝐺, 𝑖) = 𝑆(𝐺, 𝑖 + 1) + 𝑂(|𝐸|)
since we can reuse the space for every call to a path of length 𝑖+1, and therefore 𝑆(𝐺, 0) =
𝑂(|𝐸|2) which is polynomial in the length of the input.

We conclude this section with a proof that 𝐿(GEOGRAPHY) is in fact PSPACE-complete,
using a reduction from 𝐿𝜔.

Theorem 2.4 𝐿(GEOGRAPHY) is PSPACE-complete.

Proof. We will follow the proof given by [Sch78], which shows that 𝐿(GEOGRAPHY) is
log-space complete in PSPACE (a stronger condition than showing PSPACE-complete us-
ing polynomial-time reductions), by showing a reduction from 𝐿𝜔, i.e. 𝐿𝜔 ≤𝐿 𝐿(GEOGRAPHY).
Let 𝜑 be some input to 𝐿, and assume without loss of generality it is in CNF with 𝑚 clauses
𝜑 = 𝐶1 ∧…∧𝐶𝑚 where each 𝐶𝑖 is a disjunction of literals, in 𝑛 variables 𝑥1,… , 𝑥𝑛, where
𝑛 is odd (we can always add dummy variables). Define the directed graph 𝐺 = (𝑉 ,𝐸)
with vertices equal to the following set.

𝑉 = {𝑥𝑖, ¬𝑥𝑖, 𝑢𝑖, 𝑣𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑢𝑛+1} ∪ {𝑦𝑘 ∣ 1 ≤ 𝑘 ≠ 𝑚}

For edges, we let 𝐸 be the following.

𝐸 = {(𝑢𝑖 → 𝑥𝑖), (𝑢𝑖 → ¬𝑥𝑖), (𝑥𝑖 → 𝑣𝑖), (¬𝑥𝑖 → 𝑣𝑖), (𝑣𝑖 → 𝑢𝑖+1) ∣ 1 ≤ 𝑖 ≤ 𝑛}
∪ {(𝑢𝑛+1 → 𝑦𝑘) ∣ 1 ≤ 𝑘 ≤ 𝑚} ∪ {(𝑦𝑘 → 𝑥𝑖) ∣ 𝑥𝑖 occurs unnegated in 𝐶𝑘}
∪ {(𝑦𝑘 → ¬𝑥𝑖) ∣ 𝑥𝑖 occurs negated in 𝐶𝑘}

Figure 2 gives a good idea of what the graph looks like. The 𝑥𝑖 and ¬𝑥𝑖 represent choices
of 𝑥𝑖 to be 1 or 0, the 𝑢𝑖 and 𝑣𝑖 are auxiliary nodes, and the 𝑦𝑘 represent the 𝑘 clauses.
We start the game of Geography on 𝑢1. Player 1 moves to 𝑥1 or ¬𝑥1, which corresponds
to ∃𝑥1 being either 1 or 0 in 𝜑. Then Player 2 has to move to 𝑣1, and Player 1 has to
move to 𝑢2. Now Player 2 can either move to 𝑥2 or ¬𝑥2, corresponding to ∀𝑥2 in 𝜑. The
game continues in this way until we get to 𝑢𝑛+1. Since we assumed 𝑛 is odd, it is Player
2’s turn.

3 PSPACE-HARDNESS OF GO 9

𝑢1

𝑥1

¬ 𝑥1

𝑣1 𝑢2

𝑥2

¬ 𝑥2

𝑣2 𝑢𝑛+1

𝑦1𝑦2𝑦𝑘

…

Figure 2: Graph associated to quantified Boolean formula 𝜑. Here, the arrows departing
from 𝑦𝑘, 𝑦2, 𝑦1 show us that 𝐶𝑘 = ¬𝑥1 ∨…, 𝐶2 = 𝑥2 ∨…, 𝐶1 = ¬𝑥2 ∨…

Now suppose 𝜑 is not satisfiable, and let 𝐶𝑘 be a clause which is not satisfied. Then Player
2 can win by moving from 𝑢𝑛+1 to 𝑦𝑘, since the paths out of 𝑦𝑘 go to 𝑥𝑖 or ¬𝑥𝑖 depending
on which appears in 𝐶𝑘. Suppose 𝑥𝑖 appears in 𝐶𝑘, and Player 1 chooses the path 𝑦𝑘 → 𝑥𝑖.
Then since 𝐶𝑘 is not satisfied, 𝑥𝑖 is false which means we chose the path

𝑢𝑖 → ¬𝑥𝑖 → 𝑣𝑖 → 𝑢𝑖+1

Then Player 2 can choose 𝑥𝑖 → 𝑣𝑖 since this path has not been chosen yet, and Player
1 has no moves since the only outgoing edge is 𝑣𝑖 → 𝑢𝑖+1 which has already been used.
Thus, Player 2 wins.

Now suppose 𝜑 is satisfiable. Then Player 2 will move from 𝑢𝑛+1 → 𝑦𝑘 for some 𝑘. Then
by assumption, 𝐶𝑘 is true so there is some 𝑥𝑖 or ¬𝑥𝑖 which is true in 𝐶𝑘. Suppose it is 𝑥𝑖,
so that 𝑥𝑖 appears in 𝐶𝑘 and is set to true. Then there is an edge 𝑦𝑘 → 𝑥𝑖, so Player 1
chooses this edge. Then since 𝑥𝑖 was set to true, the previous paths include

𝑢𝑖 → 𝑥𝑖 → 𝑣𝑖 → 𝑢𝑖+1

and the only outgoing edge of 𝑥𝑖 is to 𝑣𝑖. Therefore, Player 2 has no moves, so Player 1
wins.

This is our first amazing example of a real game that is complete in PSPACE. In the next
section, we use this example to tackle a slightly more complex game of Go.

3. PSPACE-hardness of Go
Lastly, we show that Go is PSPACE-hard, following the proof in [LS80]. This is done
through a reduction from Planar Geography (a variant of Geography), by encoding planar
graphs as Go positions.

3 PSPACE-HARDNESS OF GO 10

3.1. Rules
We begin by describing the rules of Go at a high level; for more detailed explanation, see
here.
Go involves two players, White and Black, placing stones on a (typically 19 × 19, but for
our purposes, 𝑛 × 𝑛) grid of points. Black moves first, meaning they are Player 1.
Two stones are adjacent if they occupy lines one horizontal unit over or vertical unit over,
and two diagonal stones are not adjacent (thus, every stone has 4 adjacent spaces). If a
stone is surrounded on all adjacent sides by the opposing stones, it is captured. Similarly,
if a player’s stones surround a contiguous region of the board, that territory temporarily
belongs to them. However, if one player’s stones ever surround a group of the other’s stones
and every empty space on the inside is filled, the surrounded stones are removed, meaning
that territory belonging to one player could no longer belong to them. Also, players are
not allowed to ”sacrifice” a piece: stones that they place must be adjacent to at least one
empty space (“liberty”), and they can’t place it in a surrounded area, such that their piece
is immediately thereafter removed, unless they are capturing the other player’s stones.
Therefore, the only way for a player to guarantee that territory belongs to them is through
eyes, which are empty points surrounded by one player’s stones. For example, in Figure
3, Black has a group of stones with two eyes; observe that White cannot surround any
of Black’s territory, since they need to have stones in both empty points to do so, and
this is impossible. White cannot place a stone in either eye since it would be captured
immediately (sacrificing, which is not allowed), and even if it surrounded Black’s stones
it could not place a white stone since there is another liberty within the group, so White
would be sacrificing a piece. Therefore, this territory is safe.

Figure 3: Eyes on a Go board

Unlike previously discussed games, the game ends by consensus (when both players agree to
end the game), and each player’s score is calculated as the number of empty points within

https://www.britgo.org/intro/intro2.html

3 PSPACE-HARDNESS OF GO 11

the territory that belongs to them, minus the number of their stones that were captured.
The player with the highest score wins. Though Go technically ends by agreement, for
many practical (and our) purposes, this is when one player has definite control over most
of the territory (through the use of eyes), so that the other player can’t gain more territory
than them.

Remark Note that because a game of Go ends by agreement of the two players, rather
than whenever one player can no longer move, as in games we have previously considered,
the number of moves and possible game positions is not polynomially bounded. Therefore,
rather than showing that Go is PSPACE-complete, we only show that it is PSPACE-hard.

To show PSPACE-hardness, we ensure that the Go position we construct as part of our
reduction is a position for which one player can control the majority of the territory in a
polynomial number of moves.
3.2. Hardness
We will show that Go is PSPACE-hard through a reduction from Planar Geography, which
is played on bipartite graphs with maximum degree 3. This allows us to restrict to a small
set of cases while constructing Go positions corresponding to specific Geography games.

Remark Showing that PLANAR GEOGRAPHY is PSPACE-complete involves making
Geography graphs planar by replacing the points where their edges cross with a cluster
of several new nodes, such that there are exactly two paths through the cluster, each
corresponding to the edges in the original graph. We omit the proof for brevity, but it can
be found in section 4 of [LS80].

Theorem 3.1 𝐿(GO) is PSPACE-hard.

Proof. We show this by representing a Planar Geography game as a Go position. We can
consider Planar Geography games that correspond to inputs to TQBF, since this would
be equivalent to showing a reduction from TQBF to Planar Geography, then to Go. Since
TQBF and Planar Geography are PSPACE-complete, this suffices to show that Go is
PSPACE-hard. For our construction, we will create a board position where there is one
large region of territory that definitely belongs to White (as in, it has two eyes), as well as
another (larger) region that is currently White’s, but could be captured by Black; attached
to this region, we have a region of stones corresponding to the Planar Geography game.
We will show that, in this particular position, Black wins by capturing the large contested
region of territory iff Player 1 has a winning strategy in the Geography game.
Since we are only considering graphs with maximum degree 3, and because vertices with
only incoming edges result in an instant loss for the next player (and vertices with only
outgoing edges can never be reached by a Geography game), we need only restrict to several
cases, given in Table 1, along with the corresponding Go configuration. In particular, any
vertex consisting of a singular incoming edge and outgoing edge—essentially a “dummy
vertex”—was meant to correspond to flip to the player making the next assignment to

3 PSPACE-HARDNESS OF GO 12

a literal. However, in Go, we distinguish between Player 1 and Player 2’s choices by
constructing a different position (note the distinction between (a) and (b) in the table),
allowing us to collapse dummy vertices.
Through these constructions encoding various types of vertices (referred to as pipes and
junctions, we construct a Go position corresponding to the input Planar Geography game,
away from the two large existing pieces of territory. In order to win, Black must capture
the contested piece of territory, which they have almost surrounded, except for the portion
corresponding to the Geography game. Also, in each junction, White has two eyes: they
want to connect the contested territory to these eyes to guarantee that it belongs to them.
We illustrate this in Figure 4; the portion of the Geography graph corresponding to the
first literal (𝑥1) to be assigned is the junction that is attached to the contested territory.

Figure 4: Construction of the Go board from a Geography game.

Now, we will show that Black can capture the contested territory iff Player 1 has a winning
strategy in the Geography game, through induction. Assume that, when we enter a new
junction, Black has almost surrounded the contested territory (as in, for example, Figure
4) and that it’s White’s turn.
Consider case (a) in Table 1, corresponding to Player 2 assigning a literal. In the context of
Go, this means they choose whether to go right or left out of the junction. Suppose without
loss of generality that they go left. We claim that the only valid sequence of moves is 1
(White)—2 (Black)—3 (White)—4 (Black). Note that this results in the players entering
the junction to the left, again with Black almost surrounding the contested territory and
it being White’s turn, satisfying the inductive hypothesis.
Further, this is the only valid sequence of moves. First, White’s first move has to be at
position 1 or 2 in the diagram. If not, Black could play at 2, meaning White has to block

3 PSPACE-HARDNESS OF GO 13

Table 1: Geography vertices and corresponding Go positions [LS80]

Type of vertex Geography diagram Go junction

Player 2 choice

Player 1 choice

Joint intersection

“Test” intersection

3 PSPACE-HARDNESS OF GO 14

them at 1, leading to Black winning by playing 3 (if White had played 3 earlier, then Black
could again play at 2, forcing White to play at 1, then win by playing 5.)
After White’s first move, Black has to play at point 2, or else White could play there and
connect to the two eyes in the junction. By similar logic, White is forced to play at 3,
and Black is forced to play at 4. This path of play is illustrated in Figure 5. Cases (b)
and (c) can also be shown through a similar argument. Note that while (a) corresponds
to White choosing to go left or right (analogous to assigning a literal), (b) corresponds to
Black making the choice.

Figure 5: The only valid sequence of moves through the junction in case (a).

Lastly, we show case (d). If the players pass through the junction at the top first, then
White wins: White would first play at 1, Black would then block them at 2, and then
White must play 3, resulting in Black winning by playing 4. However, if the players pass
through the right first, then we can observe that White plays 3, and regardless of what
Black plays, can win by playing 2 or 4.
We have shown that, through this construction given a Geography game corresponding to

REFERENCES 15

an input to TQBF, we obtain a Go board for which Black can win iff Player 1 can win
the Geography game. Hence we have completed our reduction, and have shown that Go
is PSPACE-hard.

References
[LS80] David Lichtenstein and Michael Sipser. “GO Is Polynomial-Space Hard”. In: J.

ACM 27.2 (Apr. 1980), pp. 393–401. issn: 0004-5411. doi: 10.1145/322186.
322201. url: https://doi.org/10.1145/322186.322201.

[Sch78] Thomas J. Schaefer. “On the complexity of some two-person perfect-information
games”. In: Journal of Computer and System Sciences 16.2 (1978), pp. 185–225.
issn: 0022-0000. doi: https://doi.org/10.1016/0022-0000(78)90045-4. url:
https://www.sciencedirect.com/science/article/pii/0022000078900454.

[SM73] L. J. Stockmeyer and A. R. Meyer. “Word problems requiring exponential time(Preliminary
Report)”. In: Proceedings of the Fifth Annual ACM Symposium on Theory of
Computing. STOC ’73. Austin, Texas, USA: Association for Computing Machin-
ery, 1973, pp. 1–9. isbn: 9781450374309. doi: 10.1145/800125.804029. url:
https://doi.org/10.1145/800125.804029.

https://doi.org/10.1145/322186.322201
https://doi.org/10.1145/322186.322201
https://doi.org/10.1145/322186.322201
https://doi.org/https://doi.org/10.1016/0022-0000(78)90045-4
https://www.sciencedirect.com/science/article/pii/0022000078900454
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029

	Introduction
	Definitions

	Two-player Formula Games
	True Quantified Boolean Formulas
	Geography

	PSPACE-hardness of Go
	Rules
	Hardness

