
ALGEBRAIC GEOMETRY CODES

RYAN CATULLO, KEVIN RIZK

Abstract. We give a brief overview of algebraic geometry codes following [Sti08].
These are codes that generalize Reed-Solomon codes by considering polynomials
evaluated at rational points lying on more general curves. The important implica-
tion is that these codes were the first infinite family to beat the Gilbert-Varshamov
bound in the thirty years since it was established.

Contents

1 Algebraic Geometry Preliminaries 1
1.1 Varieties . 1
1.2 Divisors . 3
1.3 Riemann-Roch . 5

2 Algebraic Geometry Codes 6
2.1 From RS to AG Codes 6
2.2 Dual Codes . 8
2.3 Block Length and the Hasse–Weil Bound 10
2.4 Hermitian Codes . 11
2.5 Tsfasman-Vladut-Zink Bound (TVZ) Bound 12
2.6 Decoding AG codes . 15

3 Conclusion . 15

1. Algebraic Geometry Preliminaries

The field of algebraic geometry is incredibly deep and complex, so the purpose of this section
is to give a working background on the algebraic geometry necessary to define this family of
codes. As such, we will have to black box a number of important theorems but will try to
provide motivation whenever possible.

1.1. Varieties

We start with a motivating question: what is a circle? We can define it as the set of points
(x, y) such that x2+ y2 = 1. Equivalently, we say it is the vanishing locus V (f(X, Y)) of the
polynomial f(X, Y) = X2 + Y 2 − 1, i.e. the set of solutions to f(X, Y) = 0 in A2. In fact,
this makes sense over other fields, so we can define V (f(X, Y)) ⊂ A2

k for any field k.

1

1 ALGEBRAIC GEOMETRY PRELIMINARIES 2

More generally, we have the following definition.

Definition 1.1 An algebraic variety over k is the vanishing locus V (f1, . . . , fr) ⊆ An
k where

f1, . . . , fr ∈ k[X1, . . . , Xn] are polynomials in n variables with coefficients in k.

Now consider An
C whose points are complex (z1, . . . , zn). We can describe this space as V (0)

where we consider 0 ∈ C[X1, . . . , Xn]. If you are familiar with the notion of ideals, observe
that the maximal ideals of C[X1, . . . , Xn] are exactly (X1 − z1, . . . , Xn − zn). Thus we have
a natural bijection{

maximal ideals of C[X1, . . . , Xn]
m = (X1 − z1, . . . , Xn − zn)

}
←→

{
points in V (0) = An

C
(z1, . . . , zn)

}
How can we generalize this idea to varieties? Just like we can evaluate polynomials at points,
we can ”evaluate them at maximal ideals”. For a polynomial f ∈ k[X1, . . . , Xn], we say that
”f(m) = 0” if m contains (f), i.e. f ∈ m.

In the previous correlation, if m = (X1−z1, . . . , Xn−zn) note that k[X1, . . . , Xn]/m identifies
X1 ≡ z1, . . . , Xn ≡ zn. We can equivalently say that f vanishes at (z1, . . . , zn) if

f(X1, . . . , Xn) ≡ f(z1, . . . , zn) ≡ 0 in k[X1, . . . , Xn]/m

That is, f ≡ 0 in this ring. Equivalently, f ∈ m or m contains (f), which is the intuition
behind this definition.

In general, if f1, . . . , fr ∈ k[X1, . . . , Xn] then maximal ideals m containing (f1, . . . , fr) corre-
spond bijectively to maximal ideals of k[X1, . . . , Xn]/(f1, . . . , fr).

Definition 1.2 For an algebraic variety V = V (f1, . . . , fr) over k in An
k , the coordinate ring

of V is OV = k[X1, . . . , Xn]/(f1, . . . , fr).

As we saw with the motivating example, if k is algebraically closed then we have a bijection{
maximal ideals m of

OV = k[X1, . . . , Xn]/(f1, . . . , fr)

}
←→

{
(closed) points in V ⊆ An

k

(z1, . . . , zn) ∈ kn ∼= k[X1, . . . , Xn]/m

}
We have an intuitive notion of dimension as well. Namely, every polynomial f should ”cut
down” the dimension by 1. For example, if f1(x, y, z) = x2+y2+z2−1 and V = V (f1) ⊂ A3

k,
then A3

k is 3-dimensional and we cut out one equation f1, leaving V with 2 dimensions. Note
that V is a sphere which is naturally a 2-dimensional space.

Note that we want to cut out by new equations, i.e. V (x, y, (x + y)2) = V (x, y) in A3 is
1-dimensional, not 0 dimensional since if x = y = 0 then (x + y)2 = 0 is trivially satisfied.
In turns out that the following is the correct notion of dimension.

Definition 1.3 Let V ⊂ An
k be a variety such that V = V (f1, . . . , fr) and fi is not nilpotent

in k[X1, . . . , Xn]/(f1, . . . , fi−1). Then the dimension of V is defined as dim(V) = n− r.

1 ALGEBRAIC GEOMETRY PRELIMINARIES 3

The only varieties we need to consider for AG codes are curves, i.e. varieties of dimension
1. We will fix all curves to be connected, irreducible, and projective to avoid complaints on
some of the technicalities. There are a few special properties of curves that allow a lot of
wiggle room for computation. We list some of them.

For one, there is a correspondence between curves C over k and algebraic field extensions
k(C)/k given by the function field k(C) of C, which is roughly the set of rational functions
f/g ∈ k(X1, . . . , Xn) such that g does not vanish identically on C, i.e. g ̸≡ 0 ∈ OC .

We can also consider for a point p ∈ C the field of functions f/g ∈ k(X1, . . . , Xn) such that
g(p) ̸= 0. This field is denoted k(p)/k and is called the residue field at p over k. As an
aside, we always have a surjection ⊔

p∈C

k(p) ↠ k(C)

The degree deg(p) of a point p ∈ C is the degree of the extension k(p)/k (which is a finite
extension iff p is closed, but we are only considering closed points). If k is algebraically
closed then naturally all points are degree 1, so we will often make this assumption.

1.2. Divisors

It will also be useful to have a notion of a divisor, which is not the most illuminating
terminology but is standard. For our purposes, a divisor D on a curve C over k is a formal
integral combination of regular points

D =
∑

p∈Creg

ap[p]

where all but finitely many ap are 0. By regular we intuitively mean just ”smooth” but there
is a technical difference between the two. Regular means the tangent space at p has the
same dimension as C, i.e. dimension 1, and smooth means that the Jacobian doesn’t vanish
at p, but these are not equivalent for all curves. The degree of a divisor deg(D) is defined as∑

p∈Creg ap deg(p) =
∑

p∈Creg ap (since we’re assuming all points have degree 1).

As an example, consider the curve cut out by y2 = x3 − x in A2 over C. A divisor could be
D = 2[(1, 0)]− 4[(−1, 0)] + [(2,

√
6)], which has deg(D) = −1. Given some rational function

r = f/g ∈ k(C), we can construct a divisor

div(r) =
∑

p∈Creg

ordp(r)[p]

where ordp(r) is the order of vanishing of r at p. In other words, ordp(r) = ordp(f/g) =
ordp(f)−ordp(g) is the number of zeros minus the number of poles, counted with multiplicity,
at p. For example, if C is the curve as in the previous example y2 = x3−x and r = y2/(x−2)2
one can check that

div(r) = 2[(0, 0)] + 2[(1, 0)] + 2[(−1, 0)]− 2[(2,
√
6)]− 2[(2,−

√
6)]

Note that deg(div(r)) = 2, but it is actually true that the degree of the divisor of any rational
function is always 0, i.e. ”any rational function has the same number of zeros and poles,

1 ALGEBRAIC GEOMETRY PRELIMINARIES 4

counted with multiplicity”. The reason our count is off is that technically r has another pole
at ∞.

Transform our curve by adding a variable z and setting x, y to x/z, y/z. Then our curve
becomes (y/z)2 = (x/z)3 − (x/z). If we multiply both sides by z3, we get y2z = x3 − xz2.
Note if we set z = 1 we get back our original curve, but now we can consider what happens
when z = 0. Note that x/z, y/z ”go to infinity” as z approaches 0, so in a sense this will tell
us what our curve looks like at infinity.

Thus our equation becomes 0 = x3, which is just a triple point with special notation [x : y :
z] = [0 : 1 : 0]. Note that with this same trick, r becomes (y/z)2/((x/z)−2)2 = y2/(x−2z)2.
Then it’s apparent that if x = z = 0 we get another pole of order 2, bringing our degree
count to 0.

Definition 1.4 A curve C with these extra added points at infinity is called a projective
curve. Any rational divisor on a projective curve has degree 0.

Given a divisor D, we can construct OC(D) as the OC-module of rational functions r ∈ k(C)
such that div(r) + D ≥ 0, i.e. div(r) + D is a divisor with all nonnegative coefficients.
Intuitively, if D has an n[p] term for n ≥ 0 then r is allowed to have a pole at p of order at
most n, and if it has an −n[p] term then r must have a zero of order at least n at p.

It turns out that OC(D) is something called a line bundle, and in fact every line bundle
L on a curve C is given by OC(D) for some divisor D. We will ignore this, and instead
endow it with a natural structure as a vector space over k. If we have two rational functions
r, s ∈ OC(D) and a ∈ k then r + s and ar are both in OC(D). It is obvious for ar since
multiplying by a constant doesn’t change zeros or poles. Note that if D has an n[p] term,
then ordp(r + s) ≥ min{ordp(r), ordp(s)} ≥ −n since ordp(r) + n ≥ 0 and ordp(s) + n ≥ 0
by assumption.

Thus, we can define the dimension of D to be ℓ(D) = dimkOC(D). This is geometrically
the dimension of the space of global sections of OC(D) if that is meaningful to you. These
numbers will be the focus of most of our calculations, and Riemann-Roch gives a tool for
computing this. One easy observation is the following.

Lemma 1.1 For a divisor Z on C, ℓ(Z) = 0 if and only if deg(Z) < 0.

Proof. By definition, f ∈ OC(Z) if and only if div(f) + Z ≥ 0, and taking degrees shows
deg(Z) ≥ 0 since deg div(f) = 0 on any projective curve C.

Note if D = 0 then OC(D) = OC , and under our assumptions (connected, irreducible,
projective) we have that ℓ(0) = 1, i.e. OC

∼= k. We won’t have time to prove this, but
roughly OC = kr where r is the number of connected pieces of the curve and since we
assume there is only one piece, we have r = 1.

We also need a canonical choice of divisor, which we make as follows. Let ω be a rational
differential 1-form, i.e. locally near a point p ∈ U ⊆ C, ω = rdz where r ∈ k(U) ≃ k(C) is
a rational function. We say ω has a zero (resp. pole) at p if and only if r has a zero (resp.

1 ALGEBRAIC GEOMETRY PRELIMINARIES 5

pole) at p. Thus we can define a divisor KC as div(ω), which is well-defined up to div(s) for
some rational s ∈ OC . In short, if ω′ is another 1-form then ω/ω′ = s is a rational function,
hence KC = K ′

C + div(s).

We’ll do a quick computation since this idea can be confusing. Let C = P1 which is covered by
two open sets Ux = {[x : y] : x ̸= 0}, Uy = {[x : y] : y ̸= 0}. On Ux we have a local coordinate
system s = [x : y] = [1 : y/x] and on Uy we have another coordinate t = [x : y] = [x/y : 1],
which are related on the overlap Ux∩Uy by t = 1/s. Basically, t is defined everywhere except
∞ ([1 : 0]) and s is defined everywhere except 0 ([0 : 1]), and as s → 0 we have t → ∞ by
the transition t = 1/s.

On Uy, define our differential 1-form ω = dt. This obviously has no zeros or poles on Uy,
but what about on Ux? The transition map tells us that ω = dt = d(1/s) = −ds/s2 (this
is just standard differentiation of 1/s), hence ω has a pole at s = 0 of order 2. Thus
div(ω) = KC = −2[1 : 0], which you might notice has degree −2 even though everything is
projective.

The reason is that this is not a rational divisor, since the differentiation can introduce extra
poles or zeros like we just saw. In fact, we will see in the next section why this is.

This divisor is actually incredibly special and has a lot of really nice properties. We give
OC(KC) the special name ΩC and call it the canonical bundle, even though we treat it as
a vector space as before throughout this paper. We summarize these informalisms into the
following (important) definition.

Definition 1.5 Given a rational differential 1-form ω on C, we define the canonical divisor
KC := div(ω). The vector space ΩC := OC(KC) is the canonical or dualizing bundle.

1.3. Riemann-Roch

We can now state the powerhouse theorem for computation of AG codes.

Theorem 1.2 (Riemann-Roch for Curves) Let C be a projective curve, and let D =∑
p∈Creg ap[p] be a divisor on C. Then

ℓ(D) = deg(D) + 1− g + ℓ(KC −D)

Here g is a special invariant of the curve called its genus, which has a really nice interpreta-
tion. Note that a curve C over C geometry looks like a 2d surface, since 1 complex dimension
= 2 real dimensions. A common example is elliptic curves which can be translated into a
complex torus via the Weierstrass transformation. The genus g is the ”number of holes” in
the surface. For example, a sphere has genus 0, and a torus has genus 1. Formally, g is
defined as ℓ(KC).

The Euler characteristic is another invariant given by χ = 2− 2g. You might have seen that
χ = V − E + F = 2 for planar graphs: this is directly related to the fact that χ = 2 for the
sphere, i.e. g = 0 or a sphere is a 0-holed torus. In fact, Euler characteristic is a well-defined
notion for line bundles and is defined as χ(OC(D)) = ℓ(D) − ℓ(KC −D). When D = 0 we
get χ(OC) = ℓ(0)− ℓ(KC) = 1− g, and when D = KC we get χ(ΩC) = ℓ(KC)− ℓ(0) = g−1.

2 ALGEBRAIC GEOMETRY CODES 6

Therefore, Riemann-Roch stated differently says

χ(OC(D)) = deg(D) + χ(OC)

We can use this to compute deg(KC) as a nice first application. If we let D = KC in the
above then

deg(KC) = χ(ΩC)− χ(OC) = (g − 1)− (1− g) = 2g − 2 (1)

This brings our example computation of KC = −2[1 : 0] for P1 in the previous subsection
full circle, since P1 is a genus 0 curve and hence deg(KC) = 2g − 2 = −2 as we saw.

With this theorem in hand, we can start a discussion on AG codes and begin working out
their properties.

2. Algebraic Geometry Codes

In this section, we will define Algebraic Geometry Codes, their properties, and how they can
be used. They were first introduced by V.D. Goppa in the 1970s [Gop77; Gop81; Gop82].
AG codes development proved very important in the coding theory field as they were the
first time the GV bound was beaten after its introduction. We will also discuss briefly a
popular class of AG codes, Hermitian codes.
One of the big advantages of AG codes is that they can give rise to long codes with good
distance and rate while still keeping the alphabet size relatively small. We will first motivate
the definition of AG by using the RS codes as a starting point.

2.1. From RS to AG Codes

Recall the definition of Reed-Solomon codes.

Definition 2.1 Let n, k ≥ 0 and q ≥ n. Let α1, . . . , αn ∈ Fq and define the Reed-Solomon
Code with parameters q, n, k, α as

RSq(n, k) = {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k}

That is, RSq(n, k) codes are defined as evaluation maps of polynomials of degree at most k
on n points α1, . . . , αn in Fq. Now, by going into a more geometric view, we can see that
Fq is an affine line which we can projectivize to P1

Fq
=: P1 (we use the latter notation when

the base field Fq is clear from context). Recall that now our points are [x : z] defined up
to nonzero scaling, and we recover ”normal” points by x/z = λx/λz. Thus our ”point at
infinity” is the point [1 : 0], where x/z doesn’t make sense on Fq.

We can view f(x) ∈ Fq[x] equivalently as a rational function F (x, z) on P1 defined by
F (x, z) = f(x/z). For example, if f(x) = x3 + 1 then F (x, z) = (x/z)3 + 1 = (x3 + z3)/z3.
Note the numerator and denominator are always homogeneous. Then the condition deg f < k
is restated equivalently as F (x, z) having a pole of order at most k − 1 at [1 : 0], since if
f(x) = a0+ . . .+adx

d where ad ̸= 0, we have F (x, z) = (a0z
d+ . . .+adx

d)/zd which obviously
has a pole of order d at z = 0.

As a slight abuse of notation, we write F (x, z) just as f . Then the above in the language of
Section 1 says div(f) + (k− 1)[1 : 0] ≥ 0 as a divisor, or equivalently f ∈ OP1((k− 1)[1 : 0]).

2 ALGEBRAIC GEOMETRY CODES 7

Thus what if instead we try curves C other than P1, and divisors G other than (k−1)[1 : 0]?
This is exactly the intuition behind algebraic geometry codes.

Throughout this section, we will fix the following notation. C will denote a projective
connected irreducible algebraic curve over Fq of genus g. We will let p1, . . . , pn be pairwise
distinct Fq-rational points of C (which are degree 1 as our base field is algebraically closed).
We will let D = [p1] + . . .+ [pn] denote the corresponding divisor, and G will denote another
divisor on C such that SuppD ∩ SuppG = ∅ (they have no points in common).

First, let’s define algebraic codes for general curves (function fields) and general divisors.

Definition 2.2 The algebraic geometry (AG) code associated with the curve C and divisors
D,G above is denoted CO(D,G) and is given by

CO(D,G) := {(f(p1), · · · , f(pn)) : f ∈ OC(G)} ⊆ Fn
q

Note that f(pi) is well-defined since div(f)+G ≥ 0 and SuppD∩SuppG = ∅, i.e. if f has a
pole at pi then ordpi(f)[pi] < 0, which would imply div(f) +G ̸≥ 0 since G has no [pi] term.

So now having defined AG codes, we can ask ourselves about the properties of such codes,
for example, the distance and the message length.

Theorem 2.1 The following hold.

(i) CO(D,G) is a linear [n, k, d]q code such that

d ≥ n− degG and k = ℓ(G)− ℓ(G−D)

(ii) If degG < n then k ≥ degG + 1 − g. If in addition 2g − 2 < degG < n, we have
equality. That is,

k = degG+ 1− g

(iii) If {f1, . . . , fk} is a basis of OC(G) then the n× k matrix

M =

f1(p1) f2(p1) . . . fk(p1)
...

...
. . .

...
f1(pn) f2(pn) . . . fk(pn)

is a generator matrix for CO(D,G).

The proof of this theorem is a nice application of Riemann-Roch from Section 1.

Proof. If we consider the evaluation map, ev : OC(G)→ Fn
q , defined as:

ev(f) = (f(p1), · · · , f(pn))

we see that f is in the kernel of ev if and only if div(f) + G −D ≥ 0, i.e. f has at a zero
of order at least 1 at each pi. Equivalently, f ∈ OC(G − D) and so the kernel of ev has
dimension dimkOC(G−D) = ℓ(G−D). By rank-nullity we indeed get

k = dim(CO(D,G)) = ℓ(G)− ℓ(G−D)

2 ALGEBRAIC GEOMETRY CODES 8

If degG < n then deg(G−D) < 0, so by Lemma 1.1 ℓ(G−D) = 0 (that is, ev is injective).
Then k = ℓ(G) which can be computed directly using Riemann-Roch (Theorem 1.2).

ℓ(G) = deg(G) + 1− g + ℓ(KC −G)

In particular, ℓ(G) ≥ degG+1−g and we have equality by Lemma 1.1 iff deg(KC−G) < 0,
i.e. 2g − 2 = deg(KC) < deg(G) where the first equality is by (1).

For the distance, let us consider a non-zero f ∈ OC(G) such that ev(f) is of weight d. This
means f vanishes on n−d regular points pi1 , · · · , pin−d

. Then f ∈ OC(G− (pi1 + · · ·+pin−d
))

and so ℓ(G − (pi1 + · · · + pin−d
)) > 0, so in particular, we must have degG − (n − d) ≥ 0

which implies that d ≥ n− degG.

It’s clear that if f = c1f1 + . . .+ ckfk then f(pi) = c1f1(pi) + . . .+ ckfk(pi) = [Mf]i.

Now note that if we add up our inequalities for d and k in Theorem 2.1 above, we get

d+ k ≥ n+ 1− g (2)

In particular, we see that we get an MDS code if and only if g = 0,

We will not go deeply into the theory of g = 0 codes, which are called rational codes, as it
can be shown that rational codes are, in a sense, ”equivalent” to generalized Reed-Solomon
(GRS) codes. In fact, the genus g = 0 case imposes many restrictions on the code, limiting
what can happen on the curve. The curve will be isomorphic to PFq, and in particular, the
divisor of degree 0 will have a special form (it will be generated by at most one element),
making it possible to prove that we get an equivalence with GRS codes. Moreover, we
can also express BCH and Goppa codes as subfields of rational AG codes, providing a new
perspective on all these codes.

Let’s now discuss the dual code, which is a natural concept to consider when studying a new
type of code.

2.2. Dual Codes

We can construct another code using the two divisors G,D, using another point of view. The
AG codes defined above used an evaluation point of view. We can also use the residual point
of view to create some linear codes.

Fix the same notation for C,D = [p1] + . . .+ [pn], and G such that SuppG∩ SuppD = ∅ as
in the previous subsection, and recall the notions of the rational differential 1-form ω on C,
canonical divisor KC = div(ω), and canonical bundle ΩC = OC(KC). We can analogously
define the vector space ΩC(Z) as rational differential 1-forms η such that div(η) − Z ≥ 0.
Note that ΩC(Z) = OC(KC −Z) since giving a rational function f such that div(f) +KC −
Z = div(f) + div(ω) + Z ≥ 0 is the same as giving a rational 1-form η = fω such that
div(η)− Z ≥ 0.

For a rational 1-form η, let ηpi denote the local form of η at pi. For example, if C = P1

and η = dt = −ds/s2 as in Section 1, then η0 = dt and η∞ = −ds/s2. By convention, if
ηp = f(z)dz then the point z = 0 corresponds to p.

2 ALGEBRAIC GEOMETRY CODES 9

Definition 2.3 If ηp = f(z)dz, the residue of η at p is defined as the coefficient of 1/z in
the Laurent series expansion of f(z) at z = 0, and is denoted Resp(η).

For example, if f(z) = (1+z)/(z2−z3) then the Laurent series expansion is (1/z2)(1+z)/(1−
z) = (1/z2)(1 + z)(1 + z + z2 + . . .) = (1/z2)(1 + 2z + 2z2 + . . .) = 1/z2 + 2/z + 2+ 2z + . . .
and therefore the residue would be 2. Here we used 1/(1− z) = 1 + z + z2 + . . . near z = 0,
which is essentially the geometric series formula. This is a very beautiful notion coming from
complex analysis, in particular because of the following theorem which we state but do not
prove.

Theorem 2.2 (Residue Theorem) Let ω be a rational differentiable 1-form on a smooth
projective curve C. Then ∑

p∈Creg

Resp(ω) = 0

Definition 2.4 Let C,D,G be as before with SuppD ∩ SuppG = ∅. Define the following
code.

CΩ(D,G) = {(Resp1(η), . . . ,Respn(η)) : η ∈ ΩC(G−D)} ⊆ Fn
q

Then we have an analogue of Theorem 2.1 whose proof contains essentially the same ideas.

Theorem 2.3 The following statements hold.

(i) CΩ(D,G) is a linear [n, k′, d′]q code such that

d′ ≥ degG− (2g − 2) and k′ = ℓ(KC −G+D)− ℓ(KC −G)

(ii) If 2g − 2 < degG then k′ = ℓ(KC −G+D) ≥ n− degG+ g − 1.

(iii) If 2g − 2 < degG < n we have equality, i.e.

k′ = n− degG+ g − 1

Proof. Consider the residue map Res : ΩC(G−D)→ Fn
q , defined as

Res(η) = (Resp1(η), . . . ,Respn(η))

The kernel consists of rational 1-forms η with 0 residue at each pi. Since div(η)−G+D ≥ 0,
each η has a pole of order at most 1 at every pi and having residue 0 implies it has no
pole, i.e. div(η) − G ≥ 0. Thus the kernel is ΩC(G) = OC(KC − G) which has dimension
ℓ(KC − G). Similarly dimk ΩC(G − D) = dimkOC(KC − G + D) = ℓ(KC − G + D). By
rank-nullity,

k′ = ℓ(KC −G+D)− ℓ(KC −G)

In particular, if deg(KC −G) < 0 or 2g − 2 = degKC < degG then ℓ(KC −G) = 0 and by
Riemann-Roch

k′ = ℓ(KC −G+D) = ℓ(G−D)− deg(G−D) + g − 1 ≥ n− degG+ g − 1

2 ALGEBRAIC GEOMETRY CODES 10

If in addition deg(G−D) < 0 or degG < degD = n then ℓ(G−D) = 0 and we have equality.

For distance, suppose n − d′ residues vanish pi1 , . . . , pin−d
for some 1-form η. Then η ∈

ΩC(G −D + pi1 + . . . + pin−d′
) so ℓ(KC − G +D − (pi1 + . . . + pin−d′

)) > 0. We must then
have degKC − degG+ n− (n− d′) ≥ 0, i.e.

d′ ≥ degG− (2g − 2)

In the particular case 2g − 2 < degG < n, the above theorem and Theorem 2.1 imply

k′ + k = (n− degG+ g − 1) + (degG+ 1− g) = n

but it’s not too hard to check this holds in general, i.e.

k′ + k = ℓ(KC −G+D)− ℓ(KC −G) + ℓ(G)− ℓ(G−D) = n

(Hint: use Riemann-Roch). There’s good reason for this, as we see with the next theorem.

Theorem 2.4 (Duality) The codes CO(D,G) and CΩ(D,G) are dual to each other;

CO(D,G) = CΩ(D,G)⊥

Proof. We showed that k+k′ = n so it suffices to show any codewords satisfy ⟨ev(f),Res(η)⟩ =
0. Note that since div(f) +G ≥ 0 and div(η)−G+D ≥ 0, we have div(fη) +D ≥ 0 so fη
has a pole of order at most 1 at each pi. The residue of fη at pi is f(pi) Respi(η), hence

⟨ev(f),Res(η)⟩ =
n∑

i=1

f(pi) Respi(η) =
n∑

i=1

Respi(fη)

Note that as div(fη) + D ≥ 0 these are the only possible poles, i.e. the only points with
nonzero residues, hence by the residue theorem (Theorem 2.2)

n∑
i=1

Respi(fη) =
∑

p∈Creg

Resp(fη) = 0

We’ve established that these codes are mathematically extremely well-behaved, but what
can we say about their merits as error-correcting codes? We address this question in the
next few sections.

2.3. Block Length and the Hasse–Weil Bound

Recall from (2) that for AG codes, we have:

k + d ≥ n+ 1− g.

2 ALGEBRAIC GEOMETRY CODES 11

We see that the lower the genus, the better our distance and rate are, and the closer we are
to being an MDS (meeting the singleton bound). However, a problem arises with low-genus
curves: they cannot be very long codes. In fact, as we have seen in the definition of AG
codes, n is upper-bounded by the number of Fq-rational points on the curve. But we know
that the number of such points is bounded for a fixed g (for example by q+ 1 for g = 0). In
fact, we have the following result:

Theorem 2.5 (Hasse–Weil Bound) For a curve C of genus g, the number of Fq-points of C,
denoted by #C(Fq), satisfies:

|#C(Fq)− (q + 1)| ≤ 2g
√
q.

One interpretation of the bound is to notice that q + 1 is the number of points on the
projective line PFq , and thus ≤ 2g

√
q can be interpreted as an error term (a square-term

error in terms of q). Therefore, for small g, there are not many more points compared to a
genus zero curve.

The proof is quite involved. One of the ideas is to note that all Fq-rational points of C are, in
fact, Fq-points fixed by the Frobenius morphism Frobq : (x1, · · · , xn)→ (xq

1, · · · , xq
n). Using

intersection theory, we can prove this bound.

Remark (Small Parenthesis) The Hasse-Weil Bound is really analogous to the Riemann
Hypothesis for curves over finite fields. In fact, we can also define ζ(s, C), a zeta function
for curves, and define similar conjectures to the Riemann Hypothesis (see Weil conjectures).
The Riemann Hypothesis for ”finite fields” (one of Weil’s conjectures) was proved by Deligne,
but the proof could not be replicated for Z, which is our usual Riemann Hypothesis that
could give more information about primes.

Having established the Hasse-Weil bound, we see that for a fixed genus, n cannot be arbi-
trarily large. Therefore, to have a long code with a smaller alphabet size q, we really need to
have a larger genus g. Thus, we see that AG codes, in particular, give us a tradeoff between
the block length of the code and its distance, as we approach being an MDS and meeting
the singleton bound.

So, the problem of finding long codes with a smaller alphabet size q, but still with good rate
and distance, is transformed into a question of finding curves with a large number of rational
points—specifically, curves that meet the Hasse-Weil bound.

2.4. Hermitian Codes

Let’s find a curve of genus g > 0 curve that satisfies the Hasse-Weil bound. One such code
would be the Hermitian curve C = Hq defined over Fq2 , curve with its affine curve equation
given by:

Xq +X = Y q+1.

or XqZ+XZq = Y q+1 in projective coordinates. We can prove that C is smooth, irreducible,
and has genus g = q(q − 1)/2.

2 ALGEBRAIC GEOMETRY CODES 12

The number of Fq2 -rational points is q3 + 1 with P∞ ([0 : 0 : 1]) the point at infinity and q3

other points that we will denote Pα,β. To see why there are q3 other points, we will use nice
properties of the trace and norm field which in a way motivate the construction of the curve.
Using the field and trace norm we can see that Y q+1 = NFq2/Fq(Y) and Xq+X = TrFq2/Fq(X).

So in particular, for any β ∈ Fq2 , NFq2/Fq(β) ∈ Fq. Now for any c ∈ Fq, there are exactly q

solutions to TrFq2/Fq(α) = c in Fq2 . So now we have q2 choice for β and for each β, we have
q possible α, so we indeed get what we want.

We directly see that q3+1 = (q2+1)+
√

q2q(q− 1)/2, so the Hermitian curve indeed meets
the Hasse bound.

Now we can define the one-point Hermitian code.

Definition 2.5 Let r ∈ N. Let

D =
∑

α,β:αq+α=βq+1

Pα,β and G = rP∞

Indeed Supp(D)∩ Supp(G) = ∅, and so we can define the one-point Hermitian code Hq,r as:

Hq,r = CO(D,G).

We are evaluating the f ∈ OHq(rP∞) on the points Pα,β. One useful thing is we can explicitly
write down a basis for OHq(rP∞), in fact:

OHq(rP∞) =
{
X iY j | iq + j(q − 1) ≤ r

}
.

This explicit description makes the code easier to work with.

Moreover, we have if r < q3, we have that d ≥ n−r and k ≥ r−q(q−1)/2+1. In particular,
we have

d+ k ≥ n+ 1− g = n+ 1− g = q3 + 1− q2/2 + q/2

So we see that the distance and rate are still good, and we do not lose a lot if q is of
appropriate size. Moreover, we also have that the size of the code can be longer than that of
RS codes if we want not a very big alphabet size. In particular, if we work with an alphabet
size q2, RS codes can only have n ≤ q2 while Hermitian codes can have size q3, so we have
a factor q difference.

There are other nice properties of Hermitian codes that we will not cover here. For example,
the dual of Hq,r is Hq,q3+q2−q−r−2 or the different efficient algorithms to decode them.

All these properties make the hermitian codes a useful code in practice in cryptography and
quantum error correcting codes, for example.

Now we will see how AG codes can be used to beat the GV bound.

2.5. Tsfasman-Vladut-Zink Bound (TVZ) Bound

Let’s recall that R = k/n is the rate of a code and δ = d/n is the relative distance of a code.

In coding theory, one popular lower bound and the existence of codes with good distance
and rate were given by the GV bound.

2 ALGEBRAIC GEOMETRY CODES 13

Theorem 2.6 (Gilbert–Varshamov bound theorem, [Gil52; Var57]) For any linear code over
Fq, for every 0 < δ < 1−1/q and ϵ > 0, there exists a linear code with rate R > 1−Hq(δ)−ϵ
and relative distance δ.

The proof of this bound used a random linear code. So, finding an explicit family of codes
that achieves this bound was and remains a good question. AG codes were one of the first
to give codes that not only achieve the bound but also beat it. We will try to motivate the
ideas behind the proof.

Recall that we had k + d ≥ n + 1 − g. By dividing by n, we have R + δ ≥ 1 + 1/n − g/n.
To maximize this quantity, the goal is to find, for each genus g, the curve containing the
maximal number of Fq rational points.

Let’s define the natural quantity:

Nq(g) = {#C(Fq) | C curve of genus g}.

So now, as we are interested in g/n, we can take n ≈ #C(Fq). Recall from the Hasse-Weil
bound that the only way n → ∞ is for g → ∞. As we will be interested in a family of
curves where n and thus #C(Fq) go to infinity, we want to see what happens to Nq(g) when
g →∞. So now we can define the Ihara constant:

Definition 2.6 The Ihara constant I(q) is defined as:

A(q) = lim sup
g→∞

Nq(g)

g
.

Now, if we take a family of curves that meets the Ihara constants, we get that:

R + δ > 1− 1

A(q)
.

Thus, the question becomes one of estimating A(q). First, recall that by the Hasse-Weil
bound, we can directly prove that A(q) ≤ 2

√
q, but this inequality was not tight. By a more

careful argument, [VD83] proved that:

A(q) ≤ √q − 1.

The goal is to find an upper bound for A(q), or in other words, to find a sequence of curves
or function fields that achieve this bound.

In fact, [TVZ82; Iha82] were able to find, for q = p2k, where p is a prime number, a series
of curves that achieve the upper bound of A(q), so A(q) =

√
q − 1 for q a square prime

power. The curves used are reductions modulo p of modular curves. The proof and the
constructions are quite involved and do not yield easy explicit codes.

2 ALGEBRAIC GEOMETRY CODES 14

Figure 1: TVZ bound and GV bound and singleton bound plotted for q = 121

Theorem 2.7 (Tsfasman-Vladut-Zink Bound) Let q be a square number. Then, for every
0 ≤ δ < 1 − (q1/2 − 1)−1, there exists a sequence of linear codes over Fq such that their
asymptotic relative distance δ and rate R satisfy:

R + δ >

(
1− 1

q1/2 − 1

)
.

In fact, we can prove that we beat the GV bound for q ≥ 49 and q square numbers. Figure
1 shows a plot of the GV bound and TVZ bound for q = 121, and we can observe that the
TVZ bound beats the GV bound.

The problem with the Ihara and TVZ proof was that the construction of the curves was not
very explicit, making the AG codes complicated to construct. So, even if A(q) =

√
q − 1

was achieved, some works still attempted to find explicit examples of a sequence of curves
that achieve the upper bound for q as a square number. Here, the language of function fields
proved to be easier to work with, as the idea was to try to find an explicit tower of recursively
defined function fields. This is what [GS95; GS96] did. One of the towers of function fields
they proposed was defined as follows:

En := F (x0, · · · , xn),

with x0 being a transcendental element and xi+1 satisfying:

xq−1
i xq

i+1 + xi+1 = xq
i .

If needed, one can use these relationships to define curves explicitly. These towers of func-
tion fields indeed converged to the bound A(q) ≤ √q − 1. This provides a more explicit
construction than [Iha82; TVZ82].

Moreover, the method of towers of function fields also helped to obtain results for q that is
not a square. For example, using a tower of function fields, [Bas+15] proved that for m > 1:

A(pm) ≤ 2

(
1

p⌈m/2⌉ − 1
+

1

p⌊m/2⌋ − 1

)−1

.

3 CONCLUSION 15

This is tight for even values of m. For example, for m = 3, we get:

A(p3) ≥ 2(p2 − 1)

p+ 2
,

which beats the GV bound for q = p3 > 73, for instance.

However, for q that is not a square number, the exact value of A(q) is still not known and
remains an open problem.

2.6. Decoding AG codes

We have seen how to define AG codes, some of their most well-known examples, and how
they can be used to beat the GV bound. However, what also makes a code interesting, aside
from its rate and distance, is how easy it is to decode, correct errors, or list-decode it, and
how many errors we can actually correct efficiently. This is a very important and extensive
topic, and it is still an active area of research. We did not go into detail about the algorithms
and different techniques, but it would be interesting as a continuation of our topic.

If we denote d∗ = degG−(2g−2) (recall that d′ ≥ d∗ for CΩ(D,G)), there are several general
algorithms for decoding AG codes, most of which use the dual version or residual AG codes.
For example, [SV90] developed a general algorithm that can correct up to ⌊(d∗ − 1− g)/2⌋
errors in O(n3) time for any G and D. Notably, this algorithm is still not perfect as it still
can correct more errros.

[FR93], for instance, used ideas similar to BCH decoding and the Peterson method to develop
a simpler algorithm that can correct ⌊(d∗ − 1)/2⌋ errors in O(n2) time for G = kQ for some
point Q.

There are many different algorithms that correct errors with varying complexities and error-
correction capabilities for AG codes.

Finally, it is worth noting that the Guruswami-Sudan method can be used to list-decode
AG codes, but the complexities depend on other parameter properties related to the curve,
aside from the genus.

In conclusion, there are various methods for decoding and list-decoding AG codes efficiently,
each with its advantages and disadvantages, and research in this area is ongoing.

3. Conclusion

In this report, we have provided a brief overview of some of the theory and intuition behind
the algebraic geometry used for AG codes. We introduced the codes, their properties, their
dual perspective, and their advantages. In particular, we discussed Hermitian codes and
explored the intuition behind how AG codes can be used to beat the GV bound.

It would be interesting to further explore the decoding and list-decoding algorithms for AG
codes, and investigate how other AG and algebraic techniques—perhaps involving higher-
dimensional objects can be used to better understand these codes or define new ones. Ad-
ditionally, it would be fascinating to explore whether coding theory insights can, conversely,
help us gain a deeper understanding of the geometry of curves over finite fields.

REFERENCES 16

References

[Bas+15] A. Bassa et al. “Towers of Function Fields over Non-prime Finite Fields”. In:
Moscow Mathematical Journal 15 (2015), pp. 1–29.

[FR93] G.-L. Feng and T.R.N. Rao. “Decoding algebraic-geometric codes up to the de-
signed minimum distance”. In: IEEE Transactions on Information Theory 39.1
(1993), pp. 37–45. doi: 10.1109/18.179340.

[Gil52] E. N. Gilbert. “A comparison of signalling alphabets”. In: Bell System Technical
Journal 31.3 (1952), pp. 504–522. doi: 10.1002/j.1538-7305.1952.tb01393.x.

[Gop77] V. D. Goppa. “Codes associated with divisors”. In: Probl. Peredachi Inform. 13.1
(1977). Translation: Probl. Inform. Transmission, vol. 13, pp. 22–26, 1977, pp. 33–
39.

[Gop81] V. D. Goppa. “Codes on algebraic curves”. In: Dokl. Akad. Nauk SSSR 259
(1981). Translation: Soviet Math. Dokl., vol. 24, pp. 170–172, 1981, pp. 1289–
1290.

[Gop82] V. D. Goppa. “Algebraico-geometric codes”. In: Izv. Akad. Nauk SSSR 46 (1982).
Translation: Math. USSR Izvestija, vol. 21, pp. 75–91, 1983.

[GS95] A. Garcia and H. Stichtenoth. “A tower of Artin-Schreier extensions of function
fields attaining the Drinfeld-Vlădut, bound”. In: Inventiones Mathematicae 121
(1995), pp. 211–222.

[GS96] A. Garcia and H. Stichtenoth. “On the asymptotic behaviour of some towers
of function fields over finite fields”. In: Journal of Number Theory 61 (1996),
pp. 248–273.

[Iha82] Y. Ihara. “Some remarks on the number of rational points of algebraic curves
over finite fields”. In: J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1982). 1981,
pp. 721–724.

[Sti08] Henning Stichtenoth. Algebraic Function Fields and Codes. 2nd. Springer Pub-
lishing Company, Incorporated, 2008. isbn: 3540768777.

[SV90] A.N. Skorobogatov and S.G. Vladut. “On the decoding of algebraic-geometric
codes”. In: IEEE Transactions on Information Theory 36.5 (1990), pp. 1051–
1060. doi: 10.1109/18.57204.

[TVZ82] M. A. Tsfasman, S. G. Vlădutx, and Th. Zink. “Modular curves, Shimura curves,
and Goppa codes, better than Varshamov-Gilbert bound”. In: Mathematische
Nachrichten 109 (1982), p. 21. doi: 10.1002/mana.19821090104.

[Var57] R. R. Varshamov. “Estimate of the number of signals in error correcting codes”.
In: Dokl. Akad. Nauk SSSR 117 (1957), pp. 739–741.

[VD83] Serge Vlăduţ and V. Drinfel’d. “Number of Points of an Algebraic Curve”. In:
Functional Analysis and Its Applications - FUNCT ANAL APPL-ENGL TR 17
(Jan. 1983), pp. 53–54. doi: 10.1007/BF01083182.

https://doi.org/10.1109/18.179340
https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
https://doi.org/10.1109/18.57204
https://doi.org/10.1002/mana.19821090104
https://doi.org/10.1007/BF01083182

	Algebraic Geometry Preliminaries
	Varieties
	Divisors
	Riemann-Roch

	Algebraic Geometry Codes
	From RS to AG Codes
	Dual Codes
	Block Length and the Hasse–Weil Bound
	Hermitian Codes
	Tsfasman-Vladut-Zink Bound (TVZ) Bound
	Decoding AG codes

	Conclusion

